Skip to main content

High-Power Thin-Disk Resonator and Gain Medium

  • Chapter
  • First Online:
Towards a Compact Thin-Disk-Based Femtosecond XUV Source

Part of the book series: Springer Theses ((Springer Theses))

  • 545 Accesses

Abstract

Progress in the development of laser diodes has attracted a lot of interest to Yb-doped gain media over the last few decades. Such gain media are of a quasi-three-level nature, and have a narrow absorption bandwidth, previously considered as undesirable, but then turned out to be advantageous with the availability of powerful high-brightness pump diodes. Together with the invention of the thin-disk concept [1] and routine growth of Yb:YAG crystals [2] a new class of thin-disk solid-state diode-pumped lasers was established [3]. These systems are truly power-scalable, have large mode areas over the optical elements and are sensitive to misalignment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The solutions of the equation provide \(q\) parameter expressed through the matrix elements.

  2. 2.

    The tangential plane is parallel to an optical table and the sagittal plane is perpendicular.

  3. 3.

    in high power oscillator the use of transmissive optics is undesirable, therefore mirrors play role of lenses

  4. 4.

    defined as \(1/e^2\) intensity drop

References

  1. A. Giesen, H. Hiigep, A. Voss, K. Wittig, U. Brauch, H. Opower, Scalable concept for diode-pumped high-power solid-state lasers. Appl. Phys. B 372, 365–372 (1994)

    Article  ADS  Google Scholar 

  2. G. Huber, C. Kränkel, K. Petermann, Solid-state lasers: status and future. J. Opt. Soc. Am. B 27, B93–B105 (2010)

    Article  ADS  Google Scholar 

  3. E. Sorokin, Few-Cycle Laser Pulse Generation and Its Applications, Solid-State Materials for Few-Cycle Pulse Generation and Amplification, Springer, Berlin, 2004), pp. 3–51

    Google Scholar 

  4. http://www.trumpf laser.com/produkte/festkoerperlaser/scheibenlaser/trudisk.html

  5. http://www.ipgphotonics.com/apps_mat_multi_YLR.htm

  6. M. Larionov, Kontaktierung und Charakterisierung von Kristallen für Scheibenlaser (Herbert Utz Verlag, München, 2009)

    Google Scholar 

  7. A. Giesen, J. Speiser, Fifteen years of work on thin-disk lasers: results and scaling laws. IEEE J. Quantum Electron. 13(3), 598–609 (2007)

    Article  Google Scholar 

  8. K. Beil, S.T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, G. Huber, Thermal and laser properties of Yb:LuAG for kW thin disk lasers. Opt. Express 18(20), 20712–20722 (2010)

    Article  ADS  Google Scholar 

  9. http://www.dausinger-giesen.de/products

  10. R. Paschotta, J. Aus der Au, G. Spühler, S. Erhard, A. Giesen, U. Keller, Passive mode locking of thin-disk lasers: effects of spatial hole burning. Appl. Phys. B 72, 267–278 (2001)

    Article  ADS  Google Scholar 

  11. R. Paschotta, Power scalability as a precise concept for the evaluation of laser architectures. Open access paper on arXiv.org, (2007). http://www.arxiv.org/abs/0711.3987

  12. C. Kränkel, Ytterbium-dotierte Borate und Vanadate mit großer Verstärkungsbandbreite als aktive Materialien im Scheibenlaser. PhD thesis, Universität Hamburg, (2008)

    Google Scholar 

  13. T. Südmeyer, C. Kränkel, C. Baer, O. Heckl, C. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, U. Keller, High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation. Appl. Phys. B 97, 281–295 (2009)

    Article  ADS  Google Scholar 

  14. R. Peters, Ytterbium-dotierte Sesquioxide als hocheffiziente Lasermaterialien. PhD thesis, Universität Hamburg, (2009)

    Google Scholar 

  15. B.L. Volodin, S.V. Dolgy, E.D. Melnik, E. Downs, J. Shaw, V.S. Ban, Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings. Opt. Lett. 29(16), 1891–1893 (2004)

    Article  ADS  Google Scholar 

  16. O.H. Heckl, C. Siebert, D. Sutter, J. Kleinbauer, D. Bauer, Perfect precision in industrial micro machining. Laser Tech. J. 9(2), 42–47 (2012)

    Article  Google Scholar 

  17. private discussion with Kolja Beil

    Google Scholar 

  18. C.R.E. Baer, C. Kränkel, C.J. Saraceno, O.H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, U. Keller, Femtosecond thin-disk laser with 141 W of average power. Opt. Lett. 35(13), 2302–2304 (2010)

    Article  ADS  Google Scholar 

  19. D.S. Sumida, T.Y. Fan, Emission spectra and fluorescence lifetime measurements of Yb:YAG as a function of temperature, In advanced solid state lasers, (Optical Society of America, Washington, 1994), p. YL4

    Google Scholar 

  20. K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, S. Basun, Rare-earth-doped sesquioxides. J. Lumin. 87–89, 973–975 (2000)

    Article  Google Scholar 

  21. A. Killi, C. Stolzenburg, I. Zawischa, D. Sutter, J. Kleinbauer, S. Schad, R. Brockmann, S. Weiler, J. Neuhaus, S. Kalfhues, E. Mehner, D. Bauer, H. Schlueter, C. Schmitz, The broad applicability of the disk laser principle: from CW to ps, vol. 7193 (SPIE, Bellingham, 2009), p. 71931T

    Google Scholar 

  22. D. Bauer, I. Zawischa, D.H. Sutter, A. Killi, T. Dekorsy, Mode-locked Yb:YAG thin-disk oscillator with \(41 \upmu \text{ J }\) pulse energy at 145 W average infrared power and high power frequency conversion. Opt. Express 20, 9698 (2012)

    Article  ADS  Google Scholar 

  23. N. Hodgson, H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications, (Springer, Berlin, 1997)

    Google Scholar 

  24. O. Svelto, Principles of Lasers, 4th edn. (Springer, Heidelberg, 2007)

    Google Scholar 

  25. W. Koechner, Solid-State Laser Engineering, 6th edn. (Springer, Berlin, 1999)

    Google Scholar 

  26. S. Chetkin, G. Vdovin, Deformable mirror correction of a thermal lens induced in the active rod of a solid state laser. Opt. Commun. 100, 159–165 (1993)

    Article  ADS  Google Scholar 

  27. E. Schmid, J. Speiser, A. Giesen, Characterisation of a Deformable Mirror for Compensation of the Thermal Lens in High Power Thin-Disk Lasers, (Hamburg, Germany, 2010)

    Google Scholar 

  28. D. Hanna, C. Sawyers, M. Yuratich, Large volume \(\text{ TEM }_{00}\) mode operation of Nd:YAG lasers. Opt. Commun. 37(5), 359–362 (1981)

    Article  ADS  Google Scholar 

  29. V. Magni, Multielement stable resonators containing a variable lens. J. Opt. Soc. Am. A 4(10), 1962–1969 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Pronin .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pronin, O. (2014). High-Power Thin-Disk Resonator and Gain Medium. In: Towards a Compact Thin-Disk-Based Femtosecond XUV Source. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01511-8_3

Download citation

Publish with us

Policies and ethics