High-Power Thin-Disk Resonator and Gain Medium
Chapter
First Online:
- 439 Downloads
Abstract
Progress in the development of laser diodes has attracted a lot of interest to Yb-doped gain media over the last few decades. Such gain media are of a quasi-three-level nature, and have a narrow absorption bandwidth, previously considered as undesirable, but then turned out to be advantageous with the availability of powerful high-brightness pump diodes. Together with the invention of the thin-disk concept [1] and routine growth of Yb:YAG crystals [2] a new class of thin-disk solid-state diode-pumped lasers was established [3]. These systems are truly power-scalable, have large mode areas over the optical elements and are sensitive to misalignment.
Keywords
Pump Power Thermal Lens Gain Medium Stability Zone Pump Spot
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.A. Giesen, H. Hiigep, A. Voss, K. Wittig, U. Brauch, H. Opower, Scalable concept for diode-pumped high-power solid-state lasers. Appl. Phys. B 372, 365–372 (1994)ADSCrossRefGoogle Scholar
- 2.G. Huber, C. Kränkel, K. Petermann, Solid-state lasers: status and future. J. Opt. Soc. Am. B 27, B93–B105 (2010)ADSCrossRefGoogle Scholar
- 3.E. Sorokin, Few-Cycle Laser Pulse Generation and Its Applications, Solid-State Materials for Few-Cycle Pulse Generation and Amplification, Springer, Berlin, 2004), pp. 3–51Google Scholar
- 4.http://www.trumpf laser.com/produkte/festkoerperlaser/scheibenlaser/trudisk.html
- 5.
- 6.M. Larionov, Kontaktierung und Charakterisierung von Kristallen für Scheibenlaser (Herbert Utz Verlag, München, 2009)Google Scholar
- 7.A. Giesen, J. Speiser, Fifteen years of work on thin-disk lasers: results and scaling laws. IEEE J. Quantum Electron. 13(3), 598–609 (2007)CrossRefGoogle Scholar
- 8.K. Beil, S.T. Fredrich-Thornton, F. Tellkamp, R. Peters, C. Kränkel, K. Petermann, G. Huber, Thermal and laser properties of Yb:LuAG for kW thin disk lasers. Opt. Express 18(20), 20712–20722 (2010)ADSCrossRefGoogle Scholar
- 9.
- 10.R. Paschotta, J. Aus der Au, G. Spühler, S. Erhard, A. Giesen, U. Keller, Passive mode locking of thin-disk lasers: effects of spatial hole burning. Appl. Phys. B 72, 267–278 (2001)ADSCrossRefGoogle Scholar
- 11.R. Paschotta, Power scalability as a precise concept for the evaluation of laser architectures. Open access paper on arXiv.org, (2007). http://www.arxiv.org/abs/0711.3987
- 12.C. Kränkel, Ytterbium-dotierte Borate und Vanadate mit großer Verstärkungsbandbreite als aktive Materialien im Scheibenlaser. PhD thesis, Universität Hamburg, (2008)Google Scholar
- 13.T. Südmeyer, C. Kränkel, C. Baer, O. Heckl, C. Saraceno, M. Golling, R. Peters, K. Petermann, G. Huber, U. Keller, High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation. Appl. Phys. B 97, 281–295 (2009)ADSCrossRefGoogle Scholar
- 14.R. Peters, Ytterbium-dotierte Sesquioxide als hocheffiziente Lasermaterialien. PhD thesis, Universität Hamburg, (2009)Google Scholar
- 15.B.L. Volodin, S.V. Dolgy, E.D. Melnik, E. Downs, J. Shaw, V.S. Ban, Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings. Opt. Lett. 29(16), 1891–1893 (2004)ADSCrossRefGoogle Scholar
- 16.O.H. Heckl, C. Siebert, D. Sutter, J. Kleinbauer, D. Bauer, Perfect precision in industrial micro machining. Laser Tech. J. 9(2), 42–47 (2012)CrossRefGoogle Scholar
- 17.private discussion with Kolja BeilGoogle Scholar
- 18.C.R.E. Baer, C. Kränkel, C.J. Saraceno, O.H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, U. Keller, Femtosecond thin-disk laser with 141 W of average power. Opt. Lett. 35(13), 2302–2304 (2010)ADSCrossRefGoogle Scholar
- 19.D.S. Sumida, T.Y. Fan, Emission spectra and fluorescence lifetime measurements of Yb:YAG as a function of temperature, In advanced solid state lasers, (Optical Society of America, Washington, 1994), p. YL4Google Scholar
- 20.K. Petermann, G. Huber, L. Fornasiero, S. Kuch, E. Mix, V. Peters, S. Basun, Rare-earth-doped sesquioxides. J. Lumin. 87–89, 973–975 (2000)CrossRefGoogle Scholar
- 21.A. Killi, C. Stolzenburg, I. Zawischa, D. Sutter, J. Kleinbauer, S. Schad, R. Brockmann, S. Weiler, J. Neuhaus, S. Kalfhues, E. Mehner, D. Bauer, H. Schlueter, C. Schmitz, The broad applicability of the disk laser principle: from CW to ps, vol. 7193 (SPIE, Bellingham, 2009), p. 71931TGoogle Scholar
- 22.D. Bauer, I. Zawischa, D.H. Sutter, A. Killi, T. Dekorsy, Mode-locked Yb:YAG thin-disk oscillator with \(41 \upmu \text{ J }\) pulse energy at 145 W average infrared power and high power frequency conversion. Opt. Express 20, 9698 (2012)ADSCrossRefGoogle Scholar
- 23.N. Hodgson, H. Weber, Optical Resonators: Fundamentals, Advanced Concepts and Applications, (Springer, Berlin, 1997)Google Scholar
- 24.O. Svelto, Principles of Lasers, 4th edn. (Springer, Heidelberg, 2007)Google Scholar
- 25.W. Koechner, Solid-State Laser Engineering, 6th edn. (Springer, Berlin, 1999)Google Scholar
- 26.S. Chetkin, G. Vdovin, Deformable mirror correction of a thermal lens induced in the active rod of a solid state laser. Opt. Commun. 100, 159–165 (1993)ADSCrossRefGoogle Scholar
- 27.E. Schmid, J. Speiser, A. Giesen, Characterisation of a Deformable Mirror for Compensation of the Thermal Lens in High Power Thin-Disk Lasers, (Hamburg, Germany, 2010)Google Scholar
- 28.D. Hanna, C. Sawyers, M. Yuratich, Large volume \(\text{ TEM }_{00}\) mode operation of Nd:YAG lasers. Opt. Commun. 37(5), 359–362 (1981)ADSCrossRefGoogle Scholar
- 29.V. Magni, Multielement stable resonators containing a variable lens. J. Opt. Soc. Am. A 4(10), 1962–1969 (1987)ADSCrossRefGoogle Scholar
Copyright information
© Springer International Publishing Switzerland 2014