Introduction
Chapter
First Online:
- 391 Downloads
Abstract
The invention of the optical maser [1, 2, 3] has had an enormous impact on our life and technology. The laser made data storage (CDs) and the internet possible, and became a golden standard in eye surgery, cancer treatment and diagnostics, brought unprecedented precision and speeds in micromachining, paved the way for clean energy sources and more.
Keywords
Frequency Comb Attosecond Pulse High Average Power Enhancement Cavity Femtosecond Oscillator
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- 1.N. Basov, A. Prokhorov, Application of molecular beams for the radiospectroscopic study of rotational molecular spectra. Sov. Phys. JETP 27, 431–438 (1954)Google Scholar
- 2.J.P. Gordon, H.J. Zeiger, C.H. Townes, Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of \({\rm {NH}}_{3}\). Phys. Rev. 95, 282–284 (1954)Google Scholar
- 3.T. Maiman, Stimulated optical radiation in ruby. Nature 187, 493–494 (1960)ADSCrossRefGoogle Scholar
- 4.L.E. Hargrove, R.L. Fork, M.A. Pollack, Locking of He-Ne laser modes induced by synchronous intracavity modulation. Appl. Phys. Lett. 5(1), 4–5 (1964)ADSCrossRefGoogle Scholar
- 5.A.J. DeMaria, W.H. Glenn, M.J. Brienza, M.E. Mack, Picosecond laser pulses. Proc. IEEE 57(1), 2–25 (1969)Google Scholar
- 6.E. Ippen, C. Shank, A. Dienes, Passive mode locking of the cw dye laser. Appl. Phys. Lett. 21(8), 348–350 (1972)ADSCrossRefGoogle Scholar
- 7.D.E. Spence, P.N. Kean, W. Sibbett, 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett. 16(1), 42–44 (1991)ADSCrossRefGoogle Scholar
- 8.F. Krausz, M. Fermann, T. Brabec, P. Curley, M. Hofer, M. Ober, C. Spielmann, E. Wintner, A. Schmidt, Femtosecond solid-state lasers. IEEE J. Quantum Electron. 28(10), 2097–2122 (1992)ADSCrossRefGoogle Scholar
- 9.A.H. Zewail, Laser femtochemistry. Science 242(4886), 1645–1653 (1988)ADSCrossRefGoogle Scholar
- 10.R. Holzwarth, T. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, P.S.J. Russell, Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000)ADSCrossRefGoogle Scholar
- 11.T. Udem, R. Holzwarth, T.W. Hänsch, Optical frequency metrology. Nature 416, 233–237 (2002)ADSCrossRefGoogle Scholar
- 12.M. Hentschel, R. Kienbergerlink, C. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Attosecond metrology. Nature 414, 509–513 (2001)ADSCrossRefGoogle Scholar
- 13.E. Goulielmakis, M. Schultze, M. Hofstetter, V.S. Yakovlev, J. Gagnon, M. Uiberacker, A.L. Aquila, E.M. Gullikson, D.T. Attwood, R. Kienberger, F. Krausz, U. Kleineberg, Single-cycle nonlinear optics. Science 320(5883), 1614–1617 (2008)Google Scholar
- 14.F. Krausz, M. Ivanov, Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009)ADSCrossRefGoogle Scholar
- 15.C. Gohle, T.U.M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, T.W. Hänsch, A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005)ADSCrossRefGoogle Scholar
- 16.A. Cingöz, D.C. Yost, T.K. Allison, A. Ruehl, M.E. Fermann, I. Hartl, J. Ye, Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012)ADSCrossRefGoogle Scholar
- 17.D. Bauer, I. Zawischa, D.H. Sutter, A. Killi, T. Dekorsy, Mode-locked Yb:YAG thin-disk oscillator with 41 \(\mu \)J pulse energy at 145 W average infrared power and high power frequency conversion. Opt. Express 20, 9698 (2012)ADSCrossRefGoogle Scholar
- 18.O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V.L. Kalashnikov, A. Apolonski, F. Krausz, High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator. Opt. Lett. 36(24), 4746–4748 (2011)ADSCrossRefGoogle Scholar
- 19.T. Eidam, S. Hanf, E. Seise, T.V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, A. Tünnermann, Femtosecond fiber CPA system emitting 830 W average output power. Opt. Lett. 35(2), 94–96 (2010)CrossRefGoogle Scholar
- 20.P. Russbueldt, T. Mans, J. Weitenberg, H.D. Hoffmann, R. Poprawe, Compact diode-pumped 1.1 kW Yb:YAG innoslab femtosecond amplifier. Opt. Lett. 35(24), 4169–4171 (2010)ADSCrossRefGoogle Scholar
- 21.S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, A. Apolonski, Approaching the microjoule frontier with femtosecond laser oscillators, New J. Phys. 1, 216 (2005)Google Scholar
- 22.
- 23.A. Stingl, M. Lenzner, C. Spielmann, F. Krausz, R. Szipöcs, Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser. Opt. Lett. 20(6), 602–604 (1995)ADSCrossRefGoogle Scholar
- 24.D.H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, T. Tschudi, Semiconductor saturable-absorber mirror assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime. Opt. Lett. 24(9), 631–633 (1999)ADSCrossRefGoogle Scholar
- 25.A. Greborio, A. Guandalini, J.A. der Au, Sub-100 fs pulses with 12.5-W from Yb:CALGO based oscillators, SPIE. 8235, 823511 (2012)Google Scholar
- 26.D. Bauer, F. Schättiger, J. Kleinbauer, D.H. Sutter, A. Killi, T. Dekorsy, Energies above 30 \(\mu \)J and average power beyond 100 W directly from a mode-locked thin-disk oscillator, in Advanced Solid-State Photonics, Optical Society of America, Washington, DC, p. ATuC2 (2011)Google Scholar
- 27.C.R.E. Baer, C. Kränkel, C.J. Saraceno, O.H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, U. Keller, Femtosecond thin-disk laser with 141 W of average power. Opt. Lett. 35(13), 2302–2304 (2010)ADSCrossRefGoogle Scholar
Copyright information
© Springer International Publishing Switzerland 2014