• Oleg ProninEmail author
Part of the Springer Theses book series (Springer Theses)


The invention of the optical maser [1, 2, 3] has had an enormous impact on our life and technology. The laser made data storage (CDs) and the internet possible, and became a golden standard in eye surgery, cancer treatment and diagnostics, brought unprecedented precision and speeds in micromachining, paved the way for clean energy sources and more.


Frequency Comb Attosecond Pulse High Average Power Enhancement Cavity Femtosecond Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    N. Basov, A. Prokhorov, Application of molecular beams for the radiospectroscopic study of rotational molecular spectra. Sov. Phys. JETP 27, 431–438 (1954)Google Scholar
  2. 2.
    J.P. Gordon, H.J. Zeiger, C.H. Townes, Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of \({\rm {NH}}_{3}\). Phys. Rev. 95, 282–284 (1954)Google Scholar
  3. 3.
    T. Maiman, Stimulated optical radiation in ruby. Nature 187, 493–494 (1960)ADSCrossRefGoogle Scholar
  4. 4.
    L.E. Hargrove, R.L. Fork, M.A. Pollack, Locking of He-Ne laser modes induced by synchronous intracavity modulation. Appl. Phys. Lett. 5(1), 4–5 (1964)ADSCrossRefGoogle Scholar
  5. 5.
    A.J. DeMaria, W.H. Glenn, M.J. Brienza, M.E. Mack, Picosecond laser pulses. Proc. IEEE 57(1), 2–25 (1969)Google Scholar
  6. 6.
    E. Ippen, C. Shank, A. Dienes, Passive mode locking of the cw dye laser. Appl. Phys. Lett. 21(8), 348–350 (1972)ADSCrossRefGoogle Scholar
  7. 7.
    D.E. Spence, P.N. Kean, W. Sibbett, 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt. Lett. 16(1), 42–44 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    F. Krausz, M. Fermann, T. Brabec, P. Curley, M. Hofer, M. Ober, C. Spielmann, E. Wintner, A. Schmidt, Femtosecond solid-state lasers. IEEE J. Quantum Electron. 28(10), 2097–2122 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    A.H. Zewail, Laser femtochemistry. Science 242(4886), 1645–1653 (1988)ADSCrossRefGoogle Scholar
  10. 10.
    R. Holzwarth, T. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, P.S.J. Russell, Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264–2267 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    T. Udem, R. Holzwarth, T.W. Hänsch, Optical frequency metrology. Nature 416, 233–237 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    M. Hentschel, R. Kienbergerlink, C. Spielmann, G.A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, F. Krausz, Attosecond metrology. Nature 414, 509–513 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    E. Goulielmakis, M. Schultze, M. Hofstetter, V.S. Yakovlev, J. Gagnon, M. Uiberacker, A.L. Aquila, E.M. Gullikson, D.T. Attwood, R. Kienberger, F. Krausz, U. Kleineberg, Single-cycle nonlinear optics. Science 320(5883), 1614–1617 (2008)Google Scholar
  14. 14.
    F. Krausz, M. Ivanov, Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    C. Gohle, T.U.M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, T.W. Hänsch, A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    A. Cingöz, D.C. Yost, T.K. Allison, A. Ruehl, M.E. Fermann, I. Hartl, J. Ye, Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    D. Bauer, I. Zawischa, D.H. Sutter, A. Killi, T. Dekorsy, Mode-locked Yb:YAG thin-disk oscillator with 41 \(\mu \)J pulse energy at 145 W average infrared power and high power frequency conversion. Opt. Express 20, 9698 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    O. Pronin, J. Brons, C. Grasse, V. Pervak, G. Boehm, M.-C. Amann, V.L. Kalashnikov, A. Apolonski, F. Krausz, High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator. Opt. Lett. 36(24), 4746–4748 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    T. Eidam, S. Hanf, E. Seise, T.V. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, A. Tünnermann, Femtosecond fiber CPA system emitting 830 W average output power. Opt. Lett. 35(2), 94–96 (2010)CrossRefGoogle Scholar
  20. 20.
    P. Russbueldt, T. Mans, J. Weitenberg, H.D. Hoffmann, R. Poprawe, Compact diode-pumped 1.1 kW Yb:YAG innoslab femtosecond amplifier. Opt. Lett. 35(24), 4169–4171 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, A. Apolonski, Approaching the microjoule frontier with femtosecond laser oscillators, New J. Phys. 1, 216 (2005)Google Scholar
  22. 22.
  23. 23.
    A. Stingl, M. Lenzner, C. Spielmann, F. Krausz, R. Szipöcs, Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser. Opt. Lett. 20(6), 602–604 (1995)ADSCrossRefGoogle Scholar
  24. 24.
    D.H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, T. Tschudi, Semiconductor saturable-absorber mirror assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime. Opt. Lett. 24(9), 631–633 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    A. Greborio, A. Guandalini, J.A. der Au, Sub-100 fs pulses with 12.5-W from Yb:CALGO based oscillators, SPIE. 8235, 823511 (2012)Google Scholar
  26. 26.
    D. Bauer, F. Schättiger, J. Kleinbauer, D.H. Sutter, A. Killi, T. Dekorsy, Energies above 30 \(\mu \)J and average power beyond 100 W directly from a mode-locked thin-disk oscillator, in Advanced Solid-State Photonics, Optical Society of America, Washington, DC, p. ATuC2 (2011)Google Scholar
  27. 27.
    C.R.E. Baer, C. Kränkel, C.J. Saraceno, O.H. Heckl, M. Golling, R. Peters, K. Petermann, T. Südmeyer, G. Huber, U. Keller, Femtosecond thin-disk laser with 141 W of average power. Opt. Lett. 35(13), 2302–2304 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.PhysikLudwig-Maximilians-Universität (LMU)GarchingGermany

Personalised recommendations