Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 495 Accesses

Abstract

The phenomenon of catalysis, the acceleration (of the rate) of a chemical reaction by means of a (catalyst) material through an energetically favorable mechanism, is a concept known for almost 200 years. The technological revolution in the last century would not have been possible without catalysis and nowadays approximately 85–90 % of the products of the chemical industry are made using catalytic processes, making a world without catalysis hard to imagine [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chorkendorff, I., & Niemantsverdriet, J. W. (2007). Concepts of modern catalysis and kinetics (2nd ed.). Weinheim: Wiley-VCH.

    Google Scholar 

  2. Dincer, I. (2000). Renewable Sustainable Energy Reviews, 4, 157.

    Article  Google Scholar 

  3. Ertl, G., Knözinger, H., Schüth, F., Weitkamp, J. (2008). Handbook of heterogeneous catalysis (2nd ed.). Weinheim: Wiley-VCH.

    Google Scholar 

  4. Ertl, G. (1980). Pure and Applied Chemistry, 52, 2051.

    Article  CAS  Google Scholar 

  5. Somorjai, G. (1994). Introduction to surface chemistry and catalysis (Vol. 2). Weinheim: Wiley-Interscience.

    Google Scholar 

  6. Somorjai, G., & Park, J. (2007). Catalysis Letters, 115, 87.

    Article  CAS  Google Scholar 

  7. Boudart, M. (2000). Topics in Catalysis, 13, 147.

    Article  CAS  Google Scholar 

  8. Ertl, G., Küppers, J. (1974). Low energy electrons and surface chemistry; monographs in modern chemistry (Vol. 1). Weinheim: Verlag Chemie.

    Google Scholar 

  9. Henry, C. R. (1998). Surface Science Reports, 31, 231.

    Article  CAS  Google Scholar 

  10. Freund, H. (2008). Topics in Catalysis, 48, 137.

    Article  CAS  Google Scholar 

  11. Heiz, U., Landman, U., & Henry, C. R. (2008). In U. Heiz & U. Landman (Eds.), Nanocatalysis. Berlin: Springer.

    Google Scholar 

  12. Schumacher, E., Blatter, F., Frey, M., Heiz, U., Roethlisberger, U., Schaer, M., et al. (1988). Chimia, 42, 357.

    Google Scholar 

  13. Herrmann, A., Schumacher, E., & Wöste, L. J. (1978). Journal of Chemical Physics, 68, 2327.

    Google Scholar 

  14. Dietz, T. G., Duncan, M. A., Powers, D. E., & Smalley, R. E. J. (1981). Journal of Chemical Physics, 74, 6511.

    Google Scholar 

  15. Knight, W. D., Clemenger, K., de Heer, W. A., Saunders, W. A., Chou, M. Y., & Cohen, M. L. (1984). Physical Review Letters, 52, 2141.

    Article  CAS  Google Scholar 

  16. Fayet, P., Granzer, F., Hegenbart, G., Moisar, E., Pischel, B., & Wöste, L. (1985). Physical Review Letters, 55, 3002.

    Article  CAS  Google Scholar 

  17. Heiz, U., Vanolli, F., Trento, L., & Schneider, W.-D. (1986). Review of Scientific Instruments, 1997, 68.

    Google Scholar 

  18. Heiz, U., Vayloyan, A., & Schumacher, E. (1997). Review of Scientific Instruments, 68, 3718.

    Article  CAS  Google Scholar 

  19. McClure, S. M., & Goodman, D. W. (2011). Topics in Catalysis, 54, 349.

    Article  CAS  Google Scholar 

  20. Kunz, S. (2010). Ph.D. thesis, Technische Universität München.

    Google Scholar 

  21. Arenz, M., Gilb, S., & Heiz, U. (2007). In D. Woodruff (Ed.), In the chemical physics of solid surfaces (Vol. 12, p. 1). Amsterdam: Elsevier.

    Google Scholar 

  22. Schlögl, R., & Abd Hamid, S. B. (2004). Angewandte Chemie (International ed. in English), 43, 1628.

    Article  Google Scholar 

  23. Bond, G. (1985). Surface Science, 156, 966.

    Article  CAS  Google Scholar 

  24. Abbet, S., Sanchez, A., Heiz, U., Schneider, W.-D., Ferrari, A., Pacchioni, G., et al. (2000). Surface Science, 454, 984.

    Google Scholar 

  25. Vanolli, F. (1997). Ph.D. thesis, Unversité de Lausanne.

    Google Scholar 

  26. Sanchez, A. (2000). Ph.D. thesis, Unversité de Lausanne.

    Google Scholar 

  27. Abbet, S. (2001). Ph.D. thesis, Unversité de Lausanne.

    Google Scholar 

  28. Wörz, A. (2005). Ph.D. thesis, Universität Ulm.

    Google Scholar 

  29. Röttgen, M. A. (2007). Ph.D. thesis, Technische Universität München.

    Google Scholar 

  30. Heiz, U., Sanchez, A., Abbet, S., & Schneider, W.-D. J. (1999). Journal of the American Chemical Society, 121, 3214.

    Google Scholar 

  31. Abbet, S., Sanchez, A., Heiz, U., Schneider, W., Ferrari, A. M., Pacchioni, G., et al. (2000). Journal of the American Chemical Society, 122, 3453.

    Google Scholar 

  32. Heiz, U., Sanchez, A., Abbet, S., & Schneider, W. D. (2000). Journal of the Chemical Physics, 262, 189.

    Google Scholar 

  33. Sanchez, A., Abbet, S., Heiz, U., Schneider, W.-D., Häkkinen, H., Barnett, R. N., et al. (1999). Journal of Physical Chemistry A, 103, 9573.

    Google Scholar 

  34. Röttgen, M. A., Abbet, S., Judai, K., Antonietti, J.-M., Wörz, A. S., Arenz, M., et al. (2007). Journal of the American Chemical Society, 129, 9635.

    Google Scholar 

  35. Kunz, S., Schweinberger, F. F., Habibpour, V., Röttgen, M., Harding, C., Arenz, M., et al. (2010). Journal of Physical Chemistry C, 114, 1651.

    Google Scholar 

  36. Ferrari, A. M., Rösch, N., Heiz, U., Giordano, L., Abbet, S., Sanchez, A., et al. (2000). Journal of Physical Chemistry B, 104, 10612.

    Google Scholar 

  37. Ferrari, A. M., Heiz, U., Giordano, L., Pacchioni, G., & Abbet, S. J. (2002). Journal of Physical Chemistry B, 106, 3173.

    Google Scholar 

  38. Kunz, S., Hartl, K., Nesselberger, M., Schweinberger, F. F., Kwon, G., Hanzlik, M., et al. (2010). PCCP, 12, 10288.

    Google Scholar 

  39. Hartl, K., Nesselberger, M., Mayrhofer, K. J., Kunz, S., Schweinberger, F. F., Kwon, G., et al. (2010). Electrochimica Acta, 56, 810.

    Google Scholar 

  40. Schlögl, K. (2011). Ph.D. thesis, Technische Universität München.

    Google Scholar 

  41. Niemantsverdriet, J. W. (2007). Spectroscopy in catalysis: An introduction (3rd ed.). Weinheim: Wiley-VCH.

    Google Scholar 

  42. Engel, T., & Ertl, G. (1979). In D. D. Eley, H. Pines, & P. B. Weez (Eds.) Advances in catalysis (Vol. 28, p. 1). New York: Academic Press.

    Google Scholar 

  43. Libuda, J., Meusel, I., Hoffmann, J., Hartmann, J., Piccolo, L., Henry, C. R., et al. (2001). Journal of Chemical Physics, 114, 4669.

    Google Scholar 

  44. Meusel, I., Hoffmann, J., Hartmann, J., Libuda, J., & Freund, H. J. J. (2001). Physical Chemistry B, 105, 3567.

    Article  CAS  Google Scholar 

  45. Herzing, A., Kiely, C., Carley, A., Landon, P., & Hutchings, G. (2008). Science, 321, 1331.

    Article  CAS  Google Scholar 

  46. Allian, A. D., Takanabe, K., Fujdala, K. L., Hao, X., Truex, T. J., Cai, J., et al. (2011). Journal of the American Chemical Society, 133, 4498.

    Google Scholar 

  47. Russell, H., Matthews, J., & Sewell, G. (1992). TCE removal from contaminated soil and ground water; EPA ground water issue EPA/540/S-92/002; United States Environmental Protection Agency. Robert S. Kerr Environmental Research Laboratory Ada, Oklahoma: USA

    Google Scholar 

  48. Nimlos, M. R., Jacoby, W. A., Blake, D. M., & Milne, T. A. (1993). Environment Science & Technology, 27, 732.

    Google Scholar 

  49. Fan, J., & Yates, J. J. J. (1996). Journal of the American Chemical Society, 118, 4686.

    Google Scholar 

  50. Schüth, C., Disser, S., Schüth, F., & Reinhard, M. (2000). Applied Catalysis B: Environmental, 28, 147.

    Article  Google Scholar 

  51. Barrabes, N., Cornado, D., Foettinger, K., Dafinov, A., Llorca, J., Medina, F., et al. (2009). Journal of Catalysis, 263, 239.

    Google Scholar 

  52. Barbosa, L. A. M. M., & Sautet, P. (2002). Journal of Catalysis, 207, 127.

    Article  CAS  Google Scholar 

  53. Barbosa, L. A. M. M., Loffreda, D., & Sautet, P. (2002). Langmuir, 18, 2625.

    Article  CAS  Google Scholar 

  54. Jugnet, Y., Bertolini, J. C., Barbosa, L. A. M. M., & Sautet, P. (2002). Surface Science, 505, 153.

    Article  CAS  Google Scholar 

  55. Cassuto, A., Hugenschmidt, M., Parent, P., Laffon, C., & Tourillon, H. (1994). Surface Science, 310, 390.

    Article  CAS  Google Scholar 

  56. Gary, J. H., Handwerk, G. E., & Kaiser, M. J. (2007). Petroleum refining: Technology and economics (0005th ed.). Boca Raton: CRC Press Inc.

    Google Scholar 

  57. Ciapetta, F. G., & Wallace, D. N. (1972). Catalysis Reviews—Science and Engineering, 5, 67.

    Google Scholar 

  58. Farkas, A., & Farkas, L. J. (1938). Journal of the American Chemical Society, 60, 22.

    Google Scholar 

  59. Demuth, J. E., & Eastman, D. E. (1974). Physical Review Letters, 32, 1123.

    Article  CAS  Google Scholar 

  60. Fischer, T., & Kelemen, S. (1977). Surface Science, 69, 485.

    Article  CAS  Google Scholar 

  61. Zaera, F., & Somorjai, G. A. J. (1984). Journal of the American Chemical Society, 106, 2288.

    Google Scholar 

  62. Zaera, F. (1996). Langmuir, 12, 88.

    Article  CAS  Google Scholar 

  63. Öfner, H., & Zaera, F. J. (1997). Journal of Physical Chemistry B, 101, 396.

    Google Scholar 

  64. Öfner, H., & Zaera, F. J. (2002). Journal of the American Chemical Society, 124, 10982.

    Google Scholar 

  65. Lewis, N. S., & Nocera, D. G. (2006). PNAS, 103, 15729.

    Article  CAS  Google Scholar 

  66. Züttel, A., Borgschulte, A., & Schlapbach, L. (2008). Hydrogen as a future energy carrier. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  67. Langhammer, C. (2009). Ph.D. thesis, Chalmers University of Technology.

    Google Scholar 

  68. Zhu, J., & Zäch, M. (2009). Current Opinion in Colloid & Interface Science, 14, 260.

    Article  CAS  Google Scholar 

  69. Maeda, K., & Domen, K. J. (2007). Journal of Physical Chemistry C, 111, 7851.

    Google Scholar 

  70. Sathish, M., & Viswanath, R. (2007). Catalysis Today, 129, 421.

    Article  CAS  Google Scholar 

  71. Berr, M., Vaneski, A., Susha, A., Rodrigues-Fernandez, J., Döblinger, M., Jäckel, F., et al. (2010). Applied Physics Letters, 97, 093108.

    Article  Google Scholar 

  72. Vaneski, A., Susha, A. S., Rodríguez-Fernández, J., Berr, M., Jäckel, F., Feldmann, J., et al. (2011). Advanced Functional Materials, 21, 1547.

    Google Scholar 

  73. Berr, M. J., Vaneski, A., Mauser, C., Fischbach, S., Susha, A. S., & Rogach, A. L. et al. (2011). Small, 8, 291–297.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Frank Schweinberger .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schweinberger, F.F. (2014). Introduction. In: Catalysis with Supported Size-selected Pt Clusters. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01499-9_1

Download citation

Publish with us

Policies and ethics