Skip to main content

An Asymmetric Suzuki-Miyaura Reaction Mechanism

  • Chapter
  • First Online:
A Theoretical Study of Pd-Catalyzed C-C Cross-Coupling Reactions

Part of the book series: Springer Theses ((Springer Theses))

  • 1049 Accesses

Abstract

The Suzuki-Miyaura reaction, commonly known simply as Suzuki coupling, is one of the most practiced types of C–C cross-coupling reactions. In 2008, the group of Profs. Fern\(\acute{\mathrm{a}}\)ndez and Lassaletta reported that the use of the (S,S)-2,5-diphenyl-pyrrolidine-derived glyoxal bis-hydrazone ligand in catalysts of the type [PdCl\(_2\)(L)] in conjunction with Cs\(_2\)CO\(_3\) as base and toluene as solvent, allows the asymmetric Suzuki-Miyaura coupling of a broad variety of substrates in high yields and enantioselectivities. Motivated by these striking results, we decided to investigate theoretically the reported Suzuki-Miyaura coupling that led to the highest yield and enantioselectivity. The major objective of this theoretical study is to give an explanation of the origin of the enantioselectivities experimentally observed. With this aim, the full catalytic cycle for the above mentioned coupling was computed. All the results of obtained in this work are presented in this chapter. This work has been carried out in collaboration with the experimental group of Profs. Rosario Fern\(\acute{\mathrm{a}}\)ndez and J. M. Lassaletta from the Universidad de Sevilla and the CSIC de Sevilla, respectively.

In order to succeed you must fail, so that you know what not to do the next time. Anthony J. D’Angelo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The theoretical results obtained with this model system remained qualitatively valid when the PH\(_3\) ligands and the vinyl groups were replaced by the commonly used PPh\(_3\) ligands and phenyl groups [18], respectively. Importantly, in the transmetalation with phenyl groups, the reaction from S-3 was found to take place in one transition state instead of in two (i.e. S-TS2 and S-TS3).

  2. 2.

    As we will see later, this was assumed in the asymmetric Suzuki-Miyaura reaction investigated in this thesis.

  3. 3.

    The same coupling was also carried out at \(80\,^\circ \mathrm{{C}}\) affording the (R)-product at a higher yield (i.e. 98 %) but with a lower ee (i.e. 90 % (R)).

  4. 4.

    For further details on this model, see the last section of Chap. 2.

  5. 5.

    The nomenclature adopted for these \(\eta ^{2}\)-coordination modes is the one according to the IUPAC nomenclature for polycyclic aromatic hydrocarbons. For simplicity, we denoted the \(\eta ^{2}\)-j coordination in the different intermediates shown in Fig. 6.5 by adding a prime symbol (\(^{\prime }\)) to their names.

  6. 6.

    The transition state starting from OAA-I1 and OAB-I1 \(^\prime \) intermediates could not be located. Additional calculations are currently underway.

  7. 7.

    This does not happen in the cases in which the tail of 3 is below the plain defined by Pd and their coordinated ligands, as the \(\eta ^{2}\)-coordination that results from TBa-TS1 is already the appropriate \(\eta ^{2}\)-b coordination required in TBa-TS2. Hence, in the A-anti and B-syn routes no coordination change is needed and, accordingly, the transmetalation takes place directly from TBa-I2 via the transition state TBa-TS2. In contrast, in the A-syn route the transmetalation occurs in the same way than in the B-anti route.

References

  1. Miyaura, N., Yamada, K., Suzuki, A.: Tetrahedron Lett. 20, 3437 (1979)

    Article  Google Scholar 

  2. Miyaura, N., Suzuki, A.: Chem. Rev. 95, 2457 (1995)

    Article  CAS  Google Scholar 

  3. de Meijere, A., Diederich, F. In: Metal Catalyzed Cross-Coupling Reactions, 2nd edn. John Wiley & Sons, New York (2004)

    Google Scholar 

  4. Tamao, K., Miyaura, N. In: Cross-Coupling Reactions: A Practical Guide, Topics in Current Chemistry, Vol. 219, chap. 1, pp. 1–10. Springer, Berlin (2002)

    Google Scholar 

  5. Suzuki, A., Yamamoto, Y.: Chem. Lett. 40, 894 (2011)

    Article  CAS  Google Scholar 

  6. Myers, A.G., Tom, N.J., Fraley, M.E., Cohen, S.B., Madar, D.J.: J. Am. Chem. Soc. 119, 6072 (1997)

    Article  CAS  Google Scholar 

  7. Suzuki, A.: J. Organomet. Chem. 576, 147 (1999)

    Article  CAS  Google Scholar 

  8. Kotha, S., Lahiri, K., Kashinath, D.: Tetrahedron 58, 9633 (2002)

    Article  CAS  Google Scholar 

  9. Garg, N.K., Caspi, D.D., Stoltz, B.M.: J. Am. Chem. Soc. 126, 9552 (2004)

    Article  CAS  Google Scholar 

  10. Zapf, A., Beller, M.: Top. Catal. 19, 101 (2002)

    Article  CAS  Google Scholar 

  11. Suzuki, A.: Angew. Chem. Int. Ed. 50, 6723 (2011)

    Google Scholar 

  12. Braga, A.A.C., Morgon, N.H., Ujaque, G., Maseras, F.: J. Am. Chem. Soc. 127, 9298 (2005)

    Article  CAS  Google Scholar 

  13. Braga, A.A.C., Ujaque, G., Maseras, F.: Organometallics 25, 3647 (2006)

    Article  CAS  Google Scholar 

  14. Sicre, C., Braga, A.A.C., Maseras, F., Cid, M.M.: Tetrahedron 64, 7437 (2008)

    Article  CAS  Google Scholar 

  15. Weng, C.-M., Hong, F.-E.: Dalton Trans. 40, 6458 (2011)

    Article  CAS  Google Scholar 

  16. Quasdorf, K.W., Antoft-Finch, A., Liu, P., Silberstein, A.L., Komaromi, A., Blackburn, T., Ramgren, S.D., Houk, K.N., Snieckus, V., Garg, N.K.: J. Am. Chem. Soc. 133, 6352 (2011)

    Article  CAS  Google Scholar 

  17. Besora, M., Braga, A.A.C., Ujaque, G., Maseras, F., Lledós, A.: Theor. Chem. Acc. 128, 639 (2011)

    Article  CAS  Google Scholar 

  18. Braga, A.A.C., Morgon, N.H., Ujaque, G., Lledós, A., Maseras, F.: J. Organomet. Chem. 691, 4459 (2006)

    Article  CAS  Google Scholar 

  19. Carrow, B.P., Hartwig, J.F.: J. Am. Chem. Soc. 133, 2116 (2011)

    Article  CAS  Google Scholar 

  20. Ariafard, A., Lin, Z., Fairlamb, I.J.S.: Organometallics 25, 5788 (2006)

    Article  CAS  Google Scholar 

  21. Ariafard, A., Yates, B.F.: J. Am. Chem. Soc. 131, 13981 (2009)

    Article  CAS  Google Scholar 

  22. Krasovskiy, A., Lipshutz, B.H.: Org. Lett. 13, 3818 (2011)

    Article  CAS  Google Scholar 

  23. García-Melchor, M., Ujaque, G., Maseras, F., Lledós, A: In: Peruzzini, M., Gonsalvi, L. (eds.) Phosphorus compounds: advanced tools in catalysis and material sciences, vol. 37, chap. 3, pp. 57–84. Springer, Berlin (2011)

    Google Scholar 

  24. Martín, R., Buchwald, S.L.: Acc. Chem. Res. 41, 1461 (2008)

    Article  Google Scholar 

  25. Christmann, U., Vilar, R.: Angew. Chem. Int. Ed. 44, 366 (2005)

    Article  CAS  Google Scholar 

  26. Fleckenstein, C.A., Plenio, H.: Chem. Soc. Rev. 39, 694 (2010)

    Article  CAS  Google Scholar 

  27. Goossen, L.J., Koley, D., Hermann, H.L., Thiel, W.: Organometallics 25, 54 (2006)

    Article  CAS  Google Scholar 

  28. Joshaghani, M., Faramarzi, E., Rafiee, E., Daryanavard, M., Xiao, J., Baillie, C.: J. Mol. Catal. A: Chem. 259, 35 (2006)

    Article  CAS  Google Scholar 

  29. Kozuch, S., Martin, J.M.: ACS Catal. 1, 246 (2011)

    Article  CAS  Google Scholar 

  30. Jover, J., Fey, N., Purdie, M., Lloyd-Jones, G.C., Harvey, J.N.: J. Mol. Catal. A 324, 39 (2010)

    Article  CAS  Google Scholar 

  31. If you are interested in further reading, a selection of the most relevant computational studies on this topic are discussed in the book chapter (i.e. Article VI) included in Appendix B.

    Google Scholar 

  32. Brunel, J.M.: Chem. Rev. 105, 857 (2005)

    Article  CAS  Google Scholar 

  33. Berthod, M., Mignani, G., Woodward, G., Lemaire, M.: Chem. Rev. 2005, 105 (1801)

    Google Scholar 

  34. Kozlowski, M.C., Morgan, B.J., Linton, E.C.: Chem. Soc. Rev. 38, 3193 (2009)

    Article  CAS  Google Scholar 

  35. Zehm, D., Fudickar, W., Hans, M., Schilde, U., Kelling, A., Linker, T.: Chem. Eur. J. 14, 11429 (2008)

    Article  CAS  Google Scholar 

  36. Ma1, B., Zeng1, F., Zheng, F., Wu, S.: Chem. Eur. J. 17, 14844 (2011)

    Google Scholar 

  37. Yin, J., Buchwald, S.L.: J. Am. Chem. Soc. 122, 12051 (2000)

    Article  CAS  Google Scholar 

  38. Cammidge, A.N., Crépy, K.V.L.: Chem. Commun. 1723 (2000)

    Google Scholar 

  39. Jensen, J.F., Johannsen, M.: Org. Lett. 5, 3025 (2003)

    Article  CAS  Google Scholar 

  40. Mikami, K., Miyamoto, T., Hatano, M.: Chem. Commun. 2082 (2004)

    Google Scholar 

  41. Colobert, F., Valdivia, V., Choppin, S., Leroux, F.R., Fernández, I., Álvarez, E., Khiar, N.: Org. Lett. 11, 5130 (2009)

    Article  CAS  Google Scholar 

  42. Debono, N., Labande, A., Manoury, E., Daran, J.-C., Poli, R.: Organometallics 2010, 29 (1879)

    Google Scholar 

  43. Lee, J.C.H., McDonald, R., Hall, D.G.: Nature Chem. 3, 894 (2011)

    Article  CAS  Google Scholar 

  44. Kamei, T., Sato, A.H., Iwasawa, T.: Tetrahedron Lett. 52, 2638 (2011)

    Article  CAS  Google Scholar 

  45. Yamamoto, T., Akai, Y., Nagata, Y., Suginome, M.: Angew. Chem. Int. Ed. 50, 8844 (2011)

    Article  CAS  Google Scholar 

  46. Shen, X., Jones, G.O., Watson, D.A., Bhayana, B., Buchwald, S.L.: J. Am. Chem. Soc. 132, 11278 (2010)

    Article  CAS  Google Scholar 

  47. Bermejo, A., Ros, A., Fernández, R., Lassaletta, J.M.: J. Am. Chem. Soc. 130, 15798 (2008)

    Article  CAS  Google Scholar 

  48. Lassaletta, J.M., Alcarazo, M., Fernández, R.: Chem. Commun. 298 (2004)

    Google Scholar 

  49. Grasa, G.A., Hillier, A.C., Nolan, S.P.: Org. Lett. 2001, 3 (1077)

    Google Scholar 

  50. Mino, T., Shirae, Y., Sakamoto, M., Fujita, T.: J. Org. Chem. 70, 2191 (2005)

    Article  CAS  Google Scholar 

  51. Huang, Y.-L., Weng, C.-M., Hong, F.-E.: Chem. Eur. J. 14, 4426 (2008)

    Article  CAS  Google Scholar 

  52. Wang, C., Wu, W.: J. Chem. Educ. 88, 299 (2011)

    Article  CAS  Google Scholar 

  53. Zhao, Y., Truhlar, D.G.: Theor. Chem. Acc. 120, 215 (2008)

    Article  CAS  Google Scholar 

  54. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford (2009)

    Google Scholar 

  55. Fuentes, B., García-Melchor, M., Lledós, A., Maseras, F., Casares, J.A., Ujaque, G., Espinet, P.: Chem. Eur. J. 16, 8596 (2010)

    Article  CAS  Google Scholar 

  56. García-Melchor, M., Fuentes, B., Lledós, A., Casares, J.A., Ujaque, G., Espinet, P.: J. Am. Chem. Soc. 133, 13519 (2011)

    Article  Google Scholar 

  57. Andrae, D., Häussermann, U., Dolg, M., Stoll, H., Preuss, H.: Theor. Chim. Acta. 77, 123 (1990)

    Article  CAS  Google Scholar 

  58. Ehlers, A.W., Bohme, M., Dapprich, S., Gobbi, A., Hollwarth, A., Jonas, V., Kohler, K.F., Stegmann, R., Veldkamp, A., Frenking, G.: Chem. Phys. Lett. 208, 111 (1993)

    Article  CAS  Google Scholar 

  59. Check, C.E., Faust, T.O., Bailey, J.M., Wright, B.J., Gilbert, T.M., Sunderlin, L.S.: J. Phys. Chem. A 105, 8111 (2001)

    Google Scholar 

  60. Marenich, A.V., Cramer, C.J., Truhlar, D.G.: J. Phys. Chem. B 113, 6378 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max García Melchor .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

García Melchor, M. (2013). An Asymmetric Suzuki-Miyaura Reaction Mechanism. In: A Theoretical Study of Pd-Catalyzed C-C Cross-Coupling Reactions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01490-6_6

Download citation

Publish with us

Policies and ethics