Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 1030 Accesses

Abstract

As the title above suggests, this first chapter is devoted to make a general introduction to the main topic of this present thesis: the Pd-catalyzed cross-coupling reactions. With this aim, in the first part of this chapter the concept of catalysis, its origin, as well as other related topics will be briefly introduced. Next, in the second part of this chapter, the definition of C–C cross-coupling reactions and a summary of their generally accepted reaction pathway will be presented. Finally, the elementary steps that take part in this type of reactions will be described separately. Furthermore, for each of these steps, the most relevant mechanistic studies on Pd-catalyzed C–C cross-coupling reactions reported in the last years, with particular attention to the theoretical ones, will be reviewed. In principle, all the concepts provided in this first chapter should be more than enough to contextualize all the results obtained in the course of this thesis, and that are presented in Chaps. 4, 5 and 6.

In all science, error precedes the truth, and it is better it should go first than last. Hugh Walpole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The word “catalysis” originates from the Greek words “\(\kappa \alpha \tau \acute{\alpha }\)” and “\(\lambda \acute{\upsilon }\sigma \iota \varsigma \)” and has the sense of “dissolution”.

  2. 2.

    Wilhelm Ostwald was awarded with the Nobel Prize in Chemistry in 1909 “in recognition of his work on catalysis and for his investigations into the fundamental principles governing chemical equilibria and rates of reaction”.

  3. 3.

    Although this expression applies only to gas phase reactions, it is often applied in general.

  4. 4.

    The homocoupling is the coupling of two identical molecules.

  5. 5.

    Richard F. Heck, Ei-ichi Negishi and Akira Suzuki shared the Nobel Prize in Chemistry in 2010 “for palladium-catalyzed cross couplings in organic synthesis”. These scientists are the developers of the widely known Heck, Negishi, and Suzuki reactions, respectively.

  6. 6.

    These trends are only given by way of guidance; there may be exceptions.

  7. 7.

    This may be governed by the trans-effect.

    Trans-effect: is the effect that produces a ligand that facilitates the exchange or substitution of a second ligand that is in trans position respect to the former. We refer to ligands with high trans-effect when these facilitate that substitution.

  8. 8.

    There is also another variant of radical mechanism called chain mechanism. This, however, will not be discussed here. More details on this type of mechanism can be found in books on general organometallic chemistry [7, 91].

  9. 9.

    The reverse of the transmetalation reaction is commonly known as “retrotransmetalation” [74].

  10. 10.

    As in oxidative addition, these trends are only given by way of guidance, because always there may be exceptions.

  11. 11.

    This principle holds that a reversible reaction proceeds by the same mechanism in both forward and reverse directions.

References

  1. Berzelius, J.J.: Annales chimie physiques 61, 146 (1836)

    Google Scholar 

  2. Leicester, H.M., Klickstein, H.S.: Source Book in Chemistry 1400–1900. Harvard University Press, Massachusetts (1965)

    Google Scholar 

  3. Arrhenius, S.: Zeit. Phys. Chem. 28, 317 (1899)

    Google Scholar 

  4. Rothenberg, G.: Catalysis: Concepts and Green Applications. Wiley-VCH, Weinheim (2008)

    Google Scholar 

  5. Eyring, H.: J. Chem. Phys. 3, 107 (1935)

    Article  CAS  Google Scholar 

  6. Evans, M.G., Polanyi, M.: Trans. Faraday Soc. 31, 875 (1935)

    Article  CAS  Google Scholar 

  7. Hartwig, J.: Organotransition Metal Chemistry: From Bonding to Catalysis. University Science Books, California (2010)

    Google Scholar 

  8. Kozuch, S., Shaik, S.: J. Am. Chem. Soc. 128, 3355 (2006)

    Article  CAS  Google Scholar 

  9. Kozuch, S., Shaik, S.: J. Phys. Chem. A 112, 6032 (2008)

    Article  CAS  Google Scholar 

  10. Uhe, A., Kozuch, S., Shaik, S.: J. Comput. Chem. 32, 978 (2011)

    Article  CAS  Google Scholar 

  11. Kozuch, S., Shaik, S.: Acc. Chem. Res. 44, 101 (2011)

    Article  CAS  Google Scholar 

  12. Beller, M., Bolm, C. (eds.): Transition Metals for Organic Synthesis, 2nd edn. Wiley-VCH, Weinheim (2004)

    Google Scholar 

  13. de Meijere, A., Diedrich, F. (eds.): Metal-Catalyzed Cross-Coupling Reactions, 2nd edn. Wiley-VCH, Weinheim (2004)

    Google Scholar 

  14. Miyaura, N. (ed.): Cross-Coupling Reactions: A Practical Guide, No. 219 in Topics in Current Chemistry. Springer, Berlin (2002)

    Google Scholar 

  15. Buchwald, S.L. (ed.): Acc. Chem. Res. 41(special issue), 1439 (2008)

    Google Scholar 

  16. Tamao, K., Hiyama, T., Negishi, E.-I. : J. Organomet. Chem. 653(special issue), 1 (2002)

    Google Scholar 

  17. Phapale, V.B., Cárdenas, D.J.: Chem. Soc. Rev. 38, 1598 (2009)

    Google Scholar 

  18. Nicolaou, K.C., Bulger, P.G., Sarlah, D.: Angew. Chem. Int. Ed. 44, 4442 (2005)

    Article  CAS  Google Scholar 

  19. Negishi, E.-I., Hu, Q., Huang, Z., Wang, G., Yin, N.: The Chemistry of Organozinc Compounds, pp. 457–553. In: Rappoport, Z.Z., Marek, I. (eds.). Wiley , England (2006)

    Google Scholar 

  20. Kosugi, M., Sasazawa, K., Shimizu, Y., Migita, T.: Chem. Lett. 3, 301 (1977)

    Article  Google Scholar 

  21. Stille, J.K.: Angew. Chem. Int. Ed. 25, 508 (1986)

    Article  Google Scholar 

  22. Espinet, P., Echavarren, A.M.: Angew. Chem. Int. Ed. 43, 4704 (2004)

    CAS  Google Scholar 

  23. Miyaura, N., Yamada, K., Suzuki, A.: Tetrahedron Lett. 20, 3437 (1979)

    Article  Google Scholar 

  24. Miyaura, N., Suzuki, A.: Chem. Rev. 95, 2457 (1995)

    Article  CAS  Google Scholar 

  25. Negishi, E.-I., King, A.O., Okukado, N.: J. Org. Chem. 1977, 42 (1821)

    Google Scholar 

  26. Nicolaou, K. C., Sorensen, E.J.: Classics in Total Synthesis, Chap. 31. VCH, New York (1996)

    Google Scholar 

  27. Chemler, S.R., Trauner, D., Danishefsky, S.J., Angew, : Angew. Chem. Int. Ed. 40, 4544 (2001)

    Article  CAS  Google Scholar 

  28. Negishi, E.-I.: Bull. Chem. Soc. Jpn. 80, 233 (2007)

    Article  CAS  Google Scholar 

  29. Anderson, B., Becke, L., Booher, R., Flaugh, M., Harn, N., Kress, T., Varie, D., Wepsiec, J.: J. Org. Chem. 62, 8634 (1997)

    Article  CAS  Google Scholar 

  30. Rouhi, A.M.: Chem. Eng. News 82, 49 (2004)

    Google Scholar 

  31. Zapf, A., Beller, M.: Top. Catal. 19, 101 (2002)

    Article  CAS  Google Scholar 

  32. Corbet, J.P., Mignani, G.: Chem. Rev. 106, 2651 (2006)

    Article  CAS  Google Scholar 

  33. Zapf, A., Beller, M.: Handbook of Organopalladium Chemistry for Organic Synthesis. In: Negishi, E.-I. (ed.). Wiley, New York (2002)

    Google Scholar 

  34. Blaser, H.U., Indolese, A., Naud, F., Nettekoven, U., Schnyder, A.: Adv. Synth. Catal. 346, 1583 (2004)

    Article  CAS  Google Scholar 

  35. Tamura, M., Kochi, J.: J. Am. Chem. Soc. 93, 1483 (1971)

    Article  Google Scholar 

  36. Tamura, M., Kochi, J.: J. Am. Chem. Soc. 93, 1485 (1971)

    Article  Google Scholar 

  37. Tamura, M., Kochi, J.K.: J. Organomet. Chem. 42, 205 (1972)

    Article  CAS  Google Scholar 

  38. Ishiyama, T., Abe, S., Miyaura, N., Suzuki, A.: Chem. Lett. 691 (1992)

    Google Scholar 

  39. Devasagayaraj, A., Studemann, T., Knochel, P.: Angew. Chem. Int. Ed. 34, 2723 (1996)

    Article  Google Scholar 

  40. Giovannini, R., Studemann, T., Dussin, G., Knochel, P.: Angew. Chem. Int. Ed. 37, 2387 (1998)

    Article  CAS  Google Scholar 

  41. Giovannini, R., Studemann, T., Devasagayaraj, A., Dussin, G., Knochel, P.: J. Org. Chem. 64, 3544 (1999)

    Article  CAS  Google Scholar 

  42. Jensen, A.E., Knochel, P.: J. Org. Chem. 67, 79 (2002)

    Article  CAS  Google Scholar 

  43. Frisch, A.C., Beller, M.: Angew. Chem. Int. Ed. 44, 674 (2005)

    Article  CAS  Google Scholar 

  44. Littke, A.F., Fu, G.C.: Angew. Chem. Int. Ed. 41, 4176 (2002)

    Article  CAS  Google Scholar 

  45. Wolfe, J.P., Singer, R.A., Yang, B.H., Buchwald, S.L.: J. Am. Chem. Soc. 121, 9550 (1999)

    Article  CAS  Google Scholar 

  46. Zapf, A., Ehrentraut, A., Beller, M.: Angew. Chem. Int. Ed. 39, 4153 (2000)

    Article  CAS  Google Scholar 

  47. Fleckenstein, C.A., Plenio, H.: Chem. Soc. Rev. 39, 694 (2010)

    Article  CAS  Google Scholar 

  48. Kantchev, E.A.B., O’Brien, C.J., Organ, M.G.: Angew. Chem. Int. Ed. 46, 2768 (2007)

    Article  CAS  Google Scholar 

  49. Marion, N., Nolan, S.P.: Acc. Chem. Res. 41, 1440 (2008)

    Article  CAS  Google Scholar 

  50. García-Cuadrado, D., Mendoza, de P., Braga, A.A.C., Maseras, F., Echavarren, A.M.: J. Am. Chem. Soc. 129, 6880 (2007)

    Google Scholar 

  51. Alberico, D., Scott, M.E., Lautens, M.: Chem. Rev. 107, 174 (2007)

    Article  CAS  Google Scholar 

  52. Özdemir, I., Demir, S., Çetinkaya, B., Gourlaouen, C., Maseras, F., Bruneau, C., Dixneuf, P.H.: J. Am. Chem. Soc. 130, 1156 (2008)

    Google Scholar 

  53. Ackermann, L., Vicente, R., Kapdi, A.R.: Angew. Chem. Int. Ed. 48, 9792 (2009)

    Article  CAS  Google Scholar 

  54. Chiusoli, G.P., Catellani, M., Costa, M., Motti, E., Della Ca’, N., Maestri, G.: Coord. Chem. Rev. 254, 456 (2010)

    Google Scholar 

  55. Amatore, C., Jutand, A.: Acc. Chem. Res. 33, 314 (2000)

    Article  CAS  Google Scholar 

  56. Galardon, E., Ramdeehul, S., Brown, J.M., Cowley, A., Hii, K.K.M., Jutand, A.: Angew. Chem. Int. Ed. 41, 1760 (2002)

    Article  CAS  Google Scholar 

  57. Hartwig, J.F.: Inorg. Chem. 2007, 46 (1936)

    Google Scholar 

  58. Yandulov, D.V., Tran, N.T.: J. Am. Chem. Soc. 129, 1342 (2007)

    Article  CAS  Google Scholar 

  59. Senn, H.M., Ziegler, T.: Organometallics 23, 2980 (2004)

    Article  CAS  Google Scholar 

  60. Goossen, L.J., Koley, D., Hermann, H.L., Thiel, W.: Organometallics 24, 2398 (2005)

    Article  CAS  Google Scholar 

  61. Pérez-Rodríguez, M., Braga, A.A.C., García-Melchor, M., Pérez-Temprano, M.H., Casares, J.A., Ujaque, G., de Lera, A.R., Álvarez, R., Maseras, F., Espinet, P.: J. Am. Chem. Soc. 131, 3650 ( 2009)

    Google Scholar 

  62. Xue, L., Lin, Z.: Chem. Soc. Rev. 39, 1692 (2010)

    Article  CAS  Google Scholar 

  63. Casado, A.L., Espinet, P.: J. Am. Chem. Soc. 120, 8978 (1998)

    Article  CAS  Google Scholar 

  64. Goossen, L.J., Koley, D., Hermann, H.L., Thiel, W.: J. Am. Chem. Soc. 127, 11102 (2005)

    Article  CAS  Google Scholar 

  65. Sicre, C., Braga, A.A.C., Maseras, F., Cid, M.M.: Tetrahedron 64, 7437 (2008)

    Article  CAS  Google Scholar 

  66. Liu, Q., Lan, Y., Liu, J., Li, G., Wu, Y.-D., Lei, A.: J. Am. Chem. Soc. 131, 10201 (2009)

    Google Scholar 

  67. Casares, J.A., Espinet, P., Fuentes, B., Salas, G.: J. Am. Chem. Soc. 129, 3508 (2007)

    Article  CAS  Google Scholar 

  68. Álvarez, R., Faza, O.N., López, C.S., de Lera, A.R. Org. Lett. 8, 35 (2006)

    Google Scholar 

  69. Amatore, C., Jutand, A., Le Duc, G.: Chem. Eur. J. 17, 2492 (2011)

    Article  CAS  Google Scholar 

  70. Braga, A.A.C., Morgon, N.H., Ujaque, G., Maseras, F.: J. Am. Chem. Soc. 127, 9298 (2005)

    Article  CAS  Google Scholar 

  71. Braga, A.A.C., Ujaque, G., Maseras, F.: Organometallics 25, 3647 (2006)

    Article  CAS  Google Scholar 

  72. Braga, A.A.C., Morgon, N.H., Ujaque, G., Lledós, A., Maseras, F.: J. Organomet. Chem. 691, 4459 (2006)

    Google Scholar 

  73. Nova, A., Ujaque, G., Maseras, F., Lledós, A., Espinet, P.: J. Am. Chem. Soc. 128, 14571 (2006)

    Google Scholar 

  74. Pérez-Temprano, M. H., Nova, A., Casares, J.A., Espinet, P.: J. Am. Chem. Soc. 130, 10518 (2008)

    Google Scholar 

  75. Fuentes, B., García-Melchor, M., Lledós, A., Maseras, F., Casares, J.A., Ujaque, G., Espinet, P.: Chem. Eur. J. 16, 8596 (2010)

    Google Scholar 

  76. García-Melchor, M., Fuentes, B., Lledós, A., Casares, J.A., Ujaque, G., Espinet, P.: J. Am. Chem. Soc. 133, 13519 (2011)

    Google Scholar 

  77. García-Melchor, M., Pacheco, M.C., Nájera, C., Lledós, A., Ujaque, G.: ACS Catal. 2, 135 (2012)

    Google Scholar 

  78. Noell, J.O., Hay, P.J.: J. Am. Chem. Soc. 104, 4578 (1982)

    Article  CAS  Google Scholar 

  79. Low, J.J., Goddard, W.A.: J. Am. Chem. Soc. 106, 6928 (1984)

    Article  CAS  Google Scholar 

  80. Obara, S., Kitaura, K., Morokuma, K.: J. Am. Chem. Soc. 106, 7482 (1984)

    Article  CAS  Google Scholar 

  81. Bickelhaupt, F.M., Ziegler, T., Schleyer, P.V.R.: Organometallics 14, 2288 (1995)

    Article  CAS  Google Scholar 

  82. Ahlquist, M., Norrby, P.O.: Organometallics 26, 550 (2007)

    Article  CAS  Google Scholar 

  83. Li, Z., Fu, Y., Guo, Q.-X., Liu, L.: Organometallics 27, 4043 (2008)

    Article  CAS  Google Scholar 

  84. Jover, J., Fey, N., Purdie, M., Lloyd-Jones, G.C., Harvey, J.N.: J. Mol. Catal. A 324, 39 (2010)

    Article  CAS  Google Scholar 

  85. Schoenebeck, F., Houk, K.N.: J. Am. Chem. Soc. 132, 2496 (2010)

    Article  CAS  Google Scholar 

  86. Stille, J.K., Lau, K.S.Y.: Acc. Chem. Res. 10, 434 (1997)

    Article  Google Scholar 

  87. Casado, A.L., Casares, J.A., Espinet, P.: Inorg. Chem. 37, 4154 (1998)

    Article  CAS  Google Scholar 

  88. Netherton, M.R., Fu, G.C.: Angew. Chem. Int. Ed. 41, 3910 (2002)

    Article  CAS  Google Scholar 

  89. Hills, I.D., Netherton, M.R., Fu, G.C.: Angew. Chem. Int. Ed. 42, 5749 (2003)

    Article  CAS  Google Scholar 

  90. Gourlaouen, C., Ujaque, G., Lledós, A., Medio-Simón, M., Asensio, G., Maseras, F.: J. Org. Chem. 74, 4049 (2009)

    Google Scholar 

  91. Crabtree, R.H.: The Organometallic Chemistry of the Transition Metals, 3rd edn. John Wiley-Interscience, New York (2001)

    Google Scholar 

  92. Lappert, M., Lednor, P.: Adv. Organomet. Chem. 14, 345 (1976)

    Article  CAS  Google Scholar 

  93. Kurosawa, H., Ogoshi, S., Kawasaki, Y., Murai, S., Miyoshi, M., Ikeda, I.: J. Am. Chem. Soc. 112, 2813 (1990)

    Article  CAS  Google Scholar 

  94. Kurosawa, H., Kajimaru, H., Ogoshi, S., Yoneda, H., Miki, K., Kasai, N., Murai, S., Ikeda, I.: J. Am. Chem. Soc. 114, 8417 (1992)

    Article  CAS  Google Scholar 

  95. Astruc, D.: Organometallic Chemistry and Catalysis. Springer, Berlin (2007)

    Google Scholar 

  96. Amatore, C., Jutand, A.: J. Organomet. Chem. 576, 254 (1999)

    Article  CAS  Google Scholar 

  97. Kozuch, S., Amatore, C., Jutand, A., Shaik, S.: Organometallics 24, 2319 (2005)

    Article  CAS  Google Scholar 

  98. Diefenbach, A., de Jong, G.T., Bickelhaupt, F.M.: J. Chem. Theory Comput. 1, 286 (2005)

    Article  CAS  Google Scholar 

  99. Ariafard, A., Lin, Z.: Organometallics 25, 4030 (2006)

    Article  CAS  Google Scholar 

  100. Hartwig, J.F., Paul, F.: J. Am. Chem. Soc. 117, 5373 (1995)

    Article  CAS  Google Scholar 

  101. Ahlquist, M., Fristrup, P., Tanner, D., Norrby, P.O.: Organometallics 25, 2066 (2006)

    Article  CAS  Google Scholar 

  102. Lam, K.C., Marder, T.B., Lin, Z.Y.: Organometallics 26, 758 (2007)

    Article  CAS  Google Scholar 

  103. Barrios-Landeros, F., Carrow, B.P., Hartwig, J.F.: J. Am. Chem. Soc. 131, 8141 (2009)

    Article  CAS  Google Scholar 

  104. McMullin, C.L., Jover, J., Harvey, J.N., Fey, N.: Dalton Trans. 39, 10833 (2010)

    Article  CAS  Google Scholar 

  105. Besora, M., Gourlaouen, C., Yates, B., Maseras, F.: Dalton Trans. 40, 11089 (2011)

    Article  CAS  Google Scholar 

  106. García-Melchor, M., Ujaque, G., Maseras, F., Lledós, A., in Phosphorus Compounds: Advanced Tools in Catalysis and Material Sciences, vol. 37., Chap. 3, pp. 57–84 . In: Peruzzini, M., Gonsalvi, L. (eds.). Springer, Berlin (2011)

    Google Scholar 

  107. Farina, V.: Comprehensive Organometallic Chemistry II, vol. 12, Chap. 3.4. In: Abel, E.W., Stone, F., Wilkinson, G., Hegedus, L.S. Elsevier, Oxford (1995)

    Google Scholar 

  108. Osakada, K.: Fundamentals of Molecular Catalysis, Current Methods in Inorganic Chemistry, Chap. 5. In: Kurosawa, H., Yamamoto, A. (eds.). Elsevier, Amsterdam (2003)

    Google Scholar 

  109. Marshall, J.A.: Chem. Rev. 100, 3163 (2000)

    Article  CAS  Google Scholar 

  110. Pérez-Temprano, M.H., Gallego, A.M., Casares, J.A., Espinet, P. Organometallics, 30, 611 (2011)

    Google Scholar 

  111. Tatsumi, K., Hoffmann, R., Yamamoto, A., Stille, J.K.: Bull. Chem. Soc. Jpn. 1981, 54 (1857)

    Google Scholar 

  112. Low, J.J., Goddard, W.A.: J. Am. Chem. Soc. 108, 6115 (1986)

    Article  CAS  Google Scholar 

  113. Low, J.J., Goddard, W.A.: Organometallics 5, 609 (1986)

    Article  CAS  Google Scholar 

  114. Ananikov, V.P., Musaev, D.G., Morokuma, K.: J. Am. Chem. Soc. 124, 2839 (2002)

    Article  CAS  Google Scholar 

  115. Ananikov, V.P., Musaev, D.G., Morokuma, K.: Organometallics 24, 715 (2005)

    Article  CAS  Google Scholar 

  116. Ananikov, V.P., Musaev, D.G., Morokuma, K.: Eur. J. Inorg. Chem. 5390 (2007)

    Google Scholar 

  117. Zuidema, E., van Leeuwen, P.W.N.M., Bo, C.: Organometallics 24, 3703 (2005)

    Article  CAS  Google Scholar 

  118. Ariafard, A., Yates, B.F.: J. Organomet. Chem. 694, 2075 (2009)

    Article  CAS  Google Scholar 

  119. Ziegler, T., Rauk, A.: Theor. Chim. Acta. 46, 1 (1977)

    CAS  Google Scholar 

  120. Bickelhaupt, F.M.: J. Comput. Chem. 20, 114 (1999)

    Article  CAS  Google Scholar 

  121. Negishi, E.-I., Takahashi, T., Akiyoshi, K.: J. Organomet. Chem. 334, 181 (1987)

    Article  CAS  Google Scholar 

  122. Pérez-Rodríguez, M., Braga, A.A.C., de Lera, A.R., Maseras, F., Álvarez, R., Espinet, P. Organometallics, 29, 4983 (2010)

    Google Scholar 

  123. Méndez, M., Cuerva, J.M., Gómez-Bengoa, E., Cárdenas, D.J., Echavarren, A.M.: Chem. Eur. J. 8, 3620 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max García Melchor .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

García Melchor, M. (2013). General Introduction. In: A Theoretical Study of Pd-Catalyzed C-C Cross-Coupling Reactions. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01490-6_1

Download citation

Publish with us

Policies and ethics