Skip to main content

Turbulent Density Statistics

  • Chapter
  • First Online:
Numerical Modelling of Astrophysical Turbulence

Part of the book series: SpringerBriefs in Astronomy ((BRIEFSASTRON))

  • 1047 Accesses

Abstract

The statistics of density fluctuations play a central role for the phenomenology of compressible turbulence, particularly in the supersonic regime. The most important property is the probability density function of the mass density, which is often approximated by a log-normal function. Data from the high-resolution simulations discussed in the previous chapter, however, indicate an influence of the large-scale forcing on the shape and the width of the distribution. To analyze the impact of self-gravity on the density structure of turbulent gas, several methods can be applied. Clump finders search for extended gravitationally unstable regions. The resulting mass distribution, the so-called clump mass function, can be compared to analytical predictions. The employed stability criteria, however, are based on the Jeans or Bonnor-Ebert masses, which follow from linear perturbation analysis or the virial theorem for isolated objects. The dynamical equation for the rate of compression, on the other hand, applies to the fully non-linear regime of supersonic turbulence. By means of a statistical analysis of the relative contributions of gravitational, thermal, and turbulent source terms, the local support of the gas against gravity can be analyzed, without limitations imposed by analytical assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Numerically, \(\varDelta ^2\rho \Lambda _\mathrm{therm\,\pm }\) is averaged over narrow bins of \(P\).

References

  1. W. Schmidt, C. Federrath, M. Hupp, S. Kern, J.C. Niemeyer, A &A 494, 127 (2009). doi:10.1051/0004-6361:200809967

    ADS  Google Scholar 

  2. C. Federrath, J. Roman-Duval, R.S. Klessen, W. Schmidt, M. Mac Low, A &A 512, A81+ (2010). doi:10.1051/0004-6361/200912437.

  3. C. Federrath, R.S. Klessen, W. Schmidt, ApJ 688, L79 (2008). doi:10.1086/595280

    Article  ADS  Google Scholar 

  4. A. Azzalini, Scand. J. Statist. 12, 171 (1985)

    MathSciNet  MATH  Google Scholar 

  5. P. Padoan, A. Nordlund, B.J.T. Jones, MNRAS 288, 145 (1997)

    Article  ADS  Google Scholar 

  6. A.G. Kritsuk, M.L. Norman, P. Padoan, R. Wagner, ApJ 665, 416 (2007). doi:10.1086/519443

    Article  ADS  Google Scholar 

  7. H. Braun, W. Schmidt, MNRAS 421, 1838 (2012). doi:10.1111/j.1365-2966.2011.19889.x

    Article  ADS  Google Scholar 

  8. P. Hennebelle, G. Chabrier, ApJ 702, 1428 (2009). doi:10.1088/0004-637X/702/2/1428

    Article  ADS  Google Scholar 

  9. A.G. Kritsuk, M.L. Norman, R. Wagner, ApJ 727, L20 (2011). doi:10.1088/2041-8205/727/1/L20

    Article  ADS  Google Scholar 

  10. J.K. Truelove, R.I. Klein, C.F. McKee, J.H. Holliman II, L.H. Howell, J.A. Greenough, ApJ 489, L179 (1997). doi:10.1086/316779

    Article  ADS  Google Scholar 

  11. J. Kainulainen, H. Beuther, T. Henning, R. Plume, A &A 508, L35 (2009). doi:10.1051/0004-6361/200913605

    ADS  Google Scholar 

  12. C. Federrath, R.S. Klessen, ApJ 763, 51 (2013). doi:10.1088/0004-637X/763/1/51

    Article  ADS  Google Scholar 

  13. P. Padoan, Å. Nordlund, A.G. Kritsuk, M.L. Norman, P.S. Li, ApJ 661, 972 (2007). doi:10.1086/516623

    Article  ADS  Google Scholar 

  14. W. Schmidt, S.A.W. Kern, C. Federrath, R.S. Klessen, A &A 516, A25 (2010). doi:10.1051/0004-6361/200913904

    ADS  Google Scholar 

  15. R.B. Larson, MNRAS 194, 809 (1981)

    ADS  Google Scholar 

  16. E. Falgarone, J. Puget, M. Perault, A &A 257, 715 (1992)

    ADS  Google Scholar 

  17. S. Chandrasekhar, Proc. Roy. Soc. London Ser. A 210, 26 (1951)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. W. Schmidt, D.C. Collins, A.G. Kritsuk, MNRAS (2013). doi:10.1093/mnras/stt399

    Google Scholar 

  19. C. Federrath, R.S. Klessen, ApJ 761, 156 (2012). doi:10.1088/0004-637X/761/2/156

    Article  ADS  Google Scholar 

  20. C. Federrath, R. Banerjee, P.C. Clark, R.S. Klessen, ApJ 713, 269 (2010). doi:10.1088/0004-637X/713/1/269

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Schmidt .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Schmidt, W. (2014). Turbulent Density Statistics. In: Numerical Modelling of Astrophysical Turbulence. SpringerBriefs in Astronomy. Springer, Cham. https://doi.org/10.1007/978-3-319-01475-3_4

Download citation

Publish with us

Policies and ethics