Skip to main content

Simulation Techniques

  • Chapter
  • First Online:
Numerical Modelling of Astrophysical Turbulence

Part of the book series: SpringerBriefs in Astronomy ((BRIEFSASTRON))

  • 1092 Accesses

Abstract

An often used method to produced turbulence in numerical simulations is random forcing. Although this method is a mathematical idealization, it allows us to perform numerical experiments in the sense that a statistically stationary and isotropic turbulent state is prepared, with well defined statistical properties that can be compared to analytical theories. For more realistic astrophysical applications, adaptive methods are indispensable. Adaptive mesh refinement was introduced to efficiently treat flows with inhomogeneous structure. The basic idea is that the numerical resolution is dynamically adjusted such that subregions of the flow with strong fluctuations or steep gradients are well resolved, while smoother regions are covered by relatively coarse grids. The treatment of turbulent flows with adaptive mesh refinement, however, is still a challenging problem, mainly because refinement criteria that are sensitive to turbulent eddies or shocks in supersonic turbulence are difficult to formulate. The need to fully resolve turbulence, however, might be ameliorated by subgrid scale models, which approximate the effect of numerically unresolved turbulent eddies and shocks through turbulent viscosity and pressure in large eddy simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Eq. (3.4) in Sect. 3.1. For consistency with Eq. (2.37), however, \(\omega _\mathrm{rms}^{2}\) is replaced by \(\langle |S^{*}|^{2}\rangle = \langle \omega ^{2}+\frac{4}{3}d^{2}\rangle \).

References

  1. R.S. Klessen, F. Heitsch, M.M. Mac Low, ApJ 535, 887 (2000). doi:10.1086/308891

    Article  ADS  Google Scholar 

  2. S. Boldyrev, A. Nordlund, P. Padoan, ApJ 573, 678 (2002)

    Article  ADS  Google Scholar 

  3. J. Ballesteros-Paredes, A. Gazol, J. Kim, R.S. Klessen, A.K. Jappsen, E. Tejero, ApJ 637, 384 (2006). doi:10.1086/498228

    Article  ADS  Google Scholar 

  4. A.G. Kritsuk, M.L. Norman, P. Padoan, R. Wagner, ApJ 665, 416 (2007). doi:10.1086/519443

    Article  ADS  Google Scholar 

  5. S. Dib, A. Brandenburg, J. Kim, M. Gopinathan, P. André, ApJ 678, L105 (2008). doi:10.1086/588608

    Article  ADS  Google Scholar 

  6. R. Kissmann, J. Kleimann, H. Fichtner, R. Grauer, MNRAS 391, 1577 (2008). doi:10.1111/j.1365-2966.2008.13974.x

    Article  ADS  Google Scholar 

  7. S.S.R. Offner, R.I. Klein, C.F. McKee, ApJ 686, 1174 (2008). doi:10.1086/590238

    Article  ADS  Google Scholar 

  8. W. Schmidt, C. Federrath, M. Hupp, S. Kern, J.C. Niemeyer, A &A 494, 127 (2009). doi:10.1051/0004-6361:200809967

    ADS  Google Scholar 

  9. C. Federrath, J. Roman-Duval, R.S. Klessen, W. Schmidt, M. Mac Low, A &A 512, A81+ (2010). doi:10.1051/0004-6361/200912437

  10. D.C. Collins, A.G. Kritsuk, P. Padoan, H. Li, H. Xu, S.D. Ustyugov, M.L. Norman, ApJ 750, 13 (2012). doi:10.1088/0004-637X/750/1/13

    Article  ADS  Google Scholar 

  11. C. Federrath, R.S. Klessen, ApJ 761, 156 (2012). doi:10.1088/0004-637X/761/2/156

    Article  ADS  Google Scholar 

  12. E. Saury, M.A. Miville-Deschênes, P. Hennebelle, E. Audit, W. Schmidt, ArXiv e-prints (2013)

    Google Scholar 

  13. M.M. Mac Low, R.S. Klessen, A. Burkert, M.D. Smith, Phys. Rev. Lett. 80, 2754 (1998)

    Article  ADS  Google Scholar 

  14. J.M. Stone, E.C. Ostriker, C.F. Gammie, ApJ 508, L99 (1998). doi:10.1086/311718

    Article  ADS  Google Scholar 

  15. V. Eswaran, S.B. Pope, Comp. Fluids. 16, 257 (1988)

    Article  ADS  MATH  Google Scholar 

  16. W. Schmidt, W. Hillebrandt, J.C. Niemeyer, Comp. Fluids 35, 353 (2006)

    Article  MATH  Google Scholar 

  17. P.A. Davidson, Turbulence: An Introduction for Scientists and Engineers (Oxford University Press, Oxford, 2004)

    Google Scholar 

  18. A.G. Kritsuk, S.D. Ustyugov, M.L. Norman, P. Padoan, in Numerical modeling of space plasma flows, Astronum-2009, ed. by N.V. Pogorelov, E. Audit, G.P. Zank. Astronomical Society of the Pacific Conference Series, vol. 429. (San Francisco: Astronomical Society of the Pacific), p. 15 (2010)

    Google Scholar 

  19. R. Walder, D. Folini, A &AS 274, 343 (2000). doi:10.1023/A:1026597318472

    MATH  Google Scholar 

  20. F. Heitsch, A.D. Slyz, J.E.G. Devriendt, L.W. Hartmann, A. Burkert, ApJ 648, 1052 (2006). doi:10.1086/505931

    Article  ADS  Google Scholar 

  21. E. Vázquez-Semadeni, G.C. Gómez, A.K. Jappsen, J. Ballesteros-Paredes, R.F. González, R.S. Klessen, ApJ 657, 870 (2007). doi:10.1086/510771

    Article  ADS  Google Scholar 

  22. P. Hennebelle, R. Banerjee, E. Vázquez-Semadeni, R.S. Klessen, E. Audit, A &A 486, L43 (2008). doi:10.1051/0004-6361:200810165

    ADS  Google Scholar 

  23. M.J. Berger, J. Oliger, J. Chem. Phys. 53, 484 (1984)

    MathSciNet  MATH  Google Scholar 

  24. M.J. Berger, P. Colella, J. Chem. Phys. 82, 64 (1989). doi:10.1016/0021-9991(89)90035-1

    MATH  Google Scholar 

  25. B.W. O’Shea, G. Bryan, J. Bordner, M.L. Norman, T. Abel, R. Harkness, A. Kritsuk, in Adaptive mesh refinement—theory and applications, ed. by T. Plewa, T. Linde, V.G. Weirs. Lecture Notes in Computational Science and Engineering, vol. 41 (Springer, Berlin, 2004), p. 341. http://esoads.eso.org/abs/2004astro.ph.3044O

  26. B. Fryxell, K. Olson, P. Ricker, F.X. Timmes, M. Zingale, D.Q. Lamb, P. MacNeice, R. Rosner, J.W. Truran, H. Tufo, ApJS 131, 273 (2000). doi:10.1086/317361

    Article  ADS  Google Scholar 

  27. A.S. Almgren, J.B. Bell, M.J. Lijewski, Z. Lukić, E. Van Andel, ApJ 765, 39 (2013). doi:10.1088/0004-637X/765/1/39

    Article  ADS  Google Scholar 

  28. R. Teyssier, A &A 385, 337 (2002). doi:10.1051/0004-6361:20011817

    ADS  Google Scholar 

  29. S. Fromang, P. Hennebelle, R. Teyssier, A &A 457, 371 (2006). doi:10.1051/0004-6361:20065371

    ADS  Google Scholar 

  30. A.G. Kritsuk, M.L. Norman, P. Padoan, ApJ 638, L25 (2006). doi:10.1086/500688

    Article  ADS  Google Scholar 

  31. F. Vazza, G. Brunetti, A. Kritsuk, R. Wagner, C. Gheller, M. Norman, A &A 504, 33 (2009). doi:10.1051/0004-6361/200912535

    ADS  Google Scholar 

  32. L. Iapichino, J. Adamek, W. Schmidt, J.C. Niemeyer, MNRAS 388, 1079 (2008). doi:10.1111/j.1365-2966.2008.13137.x

    Article  ADS  Google Scholar 

  33. S. Paul, L. Iapichino, F. Miniati, J. Bagchi, K. Mannheim, ApJ 726, 17 (2011). doi:10.1088/0004-637X/726/1/17

    Article  ADS  Google Scholar 

  34. S.B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  35. M. Germano, J. Fluid Mech. 238, 325 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. W. Schmidt, J.C. Niemeyer, W. Hillebrandt, A &A 450, 265 (2006). doi:10.1051/0004-6361:20053617

    ADS  Google Scholar 

  37. W. Schmidt, C. Federrath, A &A 528, A106+ (2011). doi:10.1051/0004-6361/201015630

  38. P. Sagaut, Large eddy simulation for incompressible flows: an introduction (Springer, Berlin, 2006)

    Google Scholar 

  39. P.R. Woodward, D.H. Porter, S. Anderson, T. Fuchs, F. Herwig, J. Phys. Conf. Ser. 46, 370 (2006). doi:10.1088/1742-6596/46/1/052

    Article  MathSciNet  ADS  Google Scholar 

  40. F.K. Röpke, W. Schmidt, in Interdisciplinary aspects of turbulence, ed. by W. Hillebrandt, F. Kupka, Lecture Notes in Physics, vol. 756. (Springer, Berlin, 2009), pp. 255-+

    Google Scholar 

  41. U. Frisch, Turbulence. The legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  42. T. Ishihara, T. Gotoh, Y. Kaneda, Ann. Rev. Fluid Mech. 41, 165 (2009). doi:10.1146/annurev.fluid.010908.165203

    Article  MathSciNet  ADS  Google Scholar 

  43. J.K. Truelove, R.I. Klein, C.F. McKee, J.H. Holliman II, L.H. Howell, J.A. Greenough, ApJ 489, L179 (1997). doi:10.1086/316779

    Article  ADS  Google Scholar 

  44. C. Federrath, S. Sur, D.R.G. Schleicher, R. Banerjee, R.S. Klessen, ApJ 731, 62 (2011). doi:10.1088/0004-637X/731/1/62

    Article  ADS  Google Scholar 

  45. M.A. Latif, D.R.G. Schleicher, W. Schmidt, J. Niemeyer, MNRAS 430, 588 (2013). doi:10.1093/mnras/sts659

    Article  ADS  Google Scholar 

  46. L. Pan, P. Padoan, A.G. Kritsuk, Phys. Rev. Lett. 102(3), 034501 (2009). doi:10.1103/PhysRevLett.102.034501

    Article  ADS  Google Scholar 

  47. L. Iapichino, W. Schmidt, J.C. Niemeyer, J. Merklein, MNRAS 414, 2297 (2011). doi:10.1111/j.1365-2966.2011.18550.x

    Article  ADS  Google Scholar 

  48. W. Schmidt, J.C. Niemeyer, W. Hillebrandt, F.K. Röpke, A &A 450, 283 (2006). doi:10.1051/0004-6361:20053618

    ADS  Google Scholar 

  49. F.K. Röpke, W. Hillebrandt, W. Schmidt, J.C. Niemeyer, S.I. Blinnikov, P.A. Mazzali, ApJ 668, 1132 (2007). doi:10.1086/521347

    Article  ADS  Google Scholar 

  50. A. Maier, L. Iapichino, W. Schmidt, J.C. Niemeyer, ApJ 707, 40 (2009). doi:10.1088/0004-637X/707/1/40

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Schmidt .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Schmidt, W. (2014). Simulation Techniques. In: Numerical Modelling of Astrophysical Turbulence. SpringerBriefs in Astronomy. Springer, Cham. https://doi.org/10.1007/978-3-319-01475-3_2

Download citation

Publish with us

Policies and ethics