Skip to main content

Optimization Techniques for Robot Path Planning

  • Conference paper

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 231))

Abstract

We present a method for robot path planning in the robot’s configuration space, in the presence of fixed obstacles. Our method employs both combinatorial and gradient-based optimization techniques, but most distinguishably, it employs a Multi-sphere Scheme purposefully developed for two and three-dimensional packing problems. This is a singular feature which not only enables us to use a particularly high-grade implementation of a packing-problem solver, but can also be utilized as a model to reduce computational effort with other path-planning or obstacle avoidance methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell (1991)

    Book  Google Scholar 

  2. Schwartz, J.T., Sharir, M.: On the piano movers’ problem. II. General techniques for computing topological troperties of real algebraic manifolds. Advances in Applied Mathematics 4, 298–351 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  3. Reif, J.R.: Complexity of the generalized movers’ problem. In: Schwartz, J.T., Sharir, M., Hopcroft, J. (eds.) Planning, Geometry and Complexity of Robot Motion. Ablex Publishing Corporation (1987)

    Google Scholar 

  4. Amato, N.M., Song, G.: Using motion planning to study protein folding pathways. Journal of Computational Biology 9, 149–168 (2002)

    Article  Google Scholar 

  5. Song, G.: A Motion Planning Approach to Protein Folding. PhD thesis, Texas A&M University (2003)

    Google Scholar 

  6. Canny, J.F.: The Complexity of Robot Motion Planning. The MIT Press (1988)

    Google Scholar 

  7. Reif, J.R., Sharir, M.: Motion planning in the presence of moving obstacles. Journal of the ACM 41, 764–790 (1994)

    Article  MATH  Google Scholar 

  8. Ahrikencheikh, C., Seireg, A.A.: Optimized-Motion Planning: Theory and Implementation, 1st edn. John Wiley & Sons, Inc., New York (1994)

    Google Scholar 

  9. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgardand, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion. The MIT Press (2005)

    Google Scholar 

  10. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall (2010)

    Google Scholar 

  11. Schwartz, J.T., Sharir, M., Hopcroft, J.: Planning, Geometry and Complexity of Robot Motion. Ablex Publishing Corporation (1987)

    Google Scholar 

  12. Barraquand, J., Kavraki, L., Latombe, J.C., Motwani, R., Li, T.Y., Raghavan, P.: A random sampling scheme for path planning. The International Journal of Robotics Research 16, 759–774 (1997)

    Article  Google Scholar 

  13. Ratliff, N., Zucker, M., Bagnell, J.A., Srinivasa, S.: CHOMP: gradient techniques for efficient motion planning. In: IEEE International Conference on Robotics and Automation, ICRA 2009, pp. 489–494. IEEE (2009)

    Google Scholar 

  14. Geraerts, R., Overmars, M.H.: A comparative study of probabilistic roadmap planners. In: Boissonnat, J., Burdick, J., Goldberg, K., Hutchinson, S. (eds.) Algorithmic Foundations of Robotics, vol. 7, pp. 43–58. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Kavraki, L., Švestka, P., Latombe, J.C., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. In: IEEE International Conference on Robotics and Automation, pp. 566–580. IEEE (1996)

    Google Scholar 

  16. Imamichi, T., Nagamochi, H.: A multi-sphere scheme for 2D and 3D packing problems. In: Stützle, T., Birattari, M., Hoos, H.H. (eds.) SLS 2007. LNCS, vol. 4638, pp. 207–211. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Imamichi, T., Nagamochi, H.: Performance analysis of a collision detection algorithm of spheres based on slab partitioning. IEICE Fundamentals of Electronics, Communications and Computer Sciences E91-A, 2308–2313 (2008)

    Google Scholar 

  18. Imamichi, T.: Nonlinear Programming Based Algorithms to Cutting and Packing Problems. Doctoral Dissertation, Kyoto University (2009)

    Google Scholar 

  19. Lozano-Perez, T.: Spatial planning: A configuration space approach. IEEE Transactions on Computers 100, 108–120 (1983)

    Article  MathSciNet  Google Scholar 

  20. Kavraki, L., Kolountzakis, M.N., Latombe, J.C.: Analysis of probabilistic roadmaps for path planning. IEEE Transactions on Robotics and Automation 14, 166–171 (1998)

    Article  Google Scholar 

  21. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer (2006)

    Google Scholar 

  22. O’Rourke, J.: Computational Geometry in C, 2nd edn. Cambridge University Press (1998)

    Google Scholar 

  23. Hubbard, P.M.: Approximating polyhedra with spheres for time-critical collision detection. ACM Transactions on Graphics 15, 179–219 (1996)

    Article  Google Scholar 

  24. Imamichi, T., Nagamochi, H.: Designing algorithms with multi-sphere scheme. In: Informatics Education and Research for Knowledge-Circulating Society, ICKS 2008, pp. 125–130. IEEE (2008)

    Google Scholar 

  25. Hiramatsu, M.: Approximating objects with spheres in multi-sphere scheme. Master’s thesis, Kyoto Univeristy (2010)

    Google Scholar 

  26. Jacquenot, G., Bennis, F., Maisonneuve, J.J., Wenger, P.: 2D multi-objective placement algorithm for free-form components. ArXiv e-prints (November 2009)

    Google Scholar 

  27. Bénabès, J., Bennis, F., Poirson, E., Ravaut, Y.: Interactive optimization strategies for layout problems. International Journal on Interactive Design and Manufacturing (IJIDeM) 4, 181–190 (2010)

    Article  Google Scholar 

  28. Beppu, K.: An application of multi-sphere scheme to robot path planning. Master’s thesis, Kyoto University (2012)

    Google Scholar 

  29. Hirosue, N.: An application of multi-sphere scheme to robot path planning with 3D-motion. Master’s thesis, Kyoto University (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar Shurbevski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Shurbevski, A., Hirosue, N., Nagamochi, H. (2014). Optimization Techniques for Robot Path Planning. In: Trajkovik, V., Anastas, M. (eds) ICT Innovations 2013. ICT Innovations 2013. Advances in Intelligent Systems and Computing, vol 231. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01466-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01466-1_10

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-01465-4

  • Online ISBN: 978-3-319-01466-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics