Skip to main content

Water Projections and Scenarios: Thinking About Our Future

  • Chapter
  • First Online:
Water and the Future of Humanity

Abstract

The world faces serious water management challenges. Current planning and management approaches, technologies, and institutions have been insufficient to address the challenges of meeting future human needs for water, maintaining and even improving agricultural productivity of water use, achieving energy objectives, and satisfying growing industrial water requirements. These goals can and must be achieved while still protecting water quality and the biodiversity of vitally important natural ecosystems. We all need to work toward realizing this or other positive futures. We must debate what futures we might want, and then define and implement measures to move us in the right direction, toward those visions. Otherwise, business-as-usual approaches will lead us to a future we know is unsustainable and humanity will be much the worst off.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 44.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcamo, J., Döll, P., Kaspar, F., & Siebert, S. (1997). Global change and global scenarios of water use and availability: An application of WaterGAP 1.0. Kassel, Germany: Wissenschaftliches Zentrum Für Umweltsystemforschung, Universität Gesamthochschule.

    Google Scholar 

  • Alcamo, J., Flörke, M., & Märker, M. (2007). Future long-term changes in global water resources driven by socioeconomic and climatic changes. Hydrological Sciences Journal, 52, 247–275.

    Article  Google Scholar 

  • Brooks, D. B., & Brandes, O. M. (2005). The soft path for water in a nutshell. Victoria, BC, Canada: Friends of the Earth Canada/POLIS Project on Ecological Governance, University of Victoria.

    Google Scholar 

  • Brooks, D. B., Brandes, O. M., & Gurman, S. (Eds.). (2009). Making the most of the water we have: The soft path approach to water management. London, UK: Earthscan.

    Google Scholar 

  • CAWMA (Comprehensive Assessment of Water Management in Agriculture). (2007). Water for food, water for life: A comprehensive assessment of water management in agriculture. London, UK/Colombo, Sri Lanka: Earthscan/IWMI.

    Google Scholar 

  • Cosgrove, W. J., & Rijsberman, F. R. (2000). World water vision: Making water everybody’s business. London, UK: Earthscan.

    Google Scholar 

  • Falkenmark, M., & Rockström, J. (2006). The new blue and green water paradigm: Breaking new ground for water resources planning and management. Journal of Water Resources Planning and Management, 5(6), 129–132.

    Article  Google Scholar 

  • Gallopin, G. C., & Rijsberman, F. (2000). Three global water scenarios. International Journal of Water, 1, 16–40.

    Article  Google Scholar 

  • Gleick, P. H. (1996). Basic water requirements for human activities: Meeting basic needs. Water International, 21(2), 83–92.

    Article  Google Scholar 

  • Gleick, P. H. (1997). Water 2050: Moving toward a sustainable vision for the earth’s fresh water. Working Paper of the Pacific Institute for Studies in Development, Environment, and Security, Oakland, California. Prepared for the Comprehensive Freshwater Assessment for the United Nations General Assembly and the Stockholm Environment Institute, Stockholm, Sweden.

    Google Scholar 

  • Gleick, P. H. (2000a). A picture of the future: A review of global water resources projections. In T. World’s (Ed.), Water 2000–2001: The biennial report on freshwater resources (pp. 39–61). Washington, DC: Island Press.

    Google Scholar 

  • Gleick, P. H. (2002). Soft water paths. Nature, 418, 373.

    Article  Google Scholar 

  • Gleick, P. H. (2009b). Getting it right: Misconceptions about the soft path. In D. B. Brooks, O. M. Brandes, & S. Gurman (Eds.), Making the most of the water we have: The soft path approach to water management (pp. 49–60). London, UK: Earthscan.

    Google Scholar 

  • Gleick, P. H., Christian-Smith, J., & Cooley, H. (2011). Water-use efficiency and productivity: Rethinking the basin approach. Water International, 36, 784–798.

    Article  Google Scholar 

  • Gleick, P. H., Loh, P., Gomez, S. V., & Morrison, J. (1995). California water 2020: A sustainable vision. Oakland, CA: Pacific Institute.

    Google Scholar 

  • Gleick, P. H., & Palaniappan, M. (2010). Peak water: Conceptual and practical limits to freshwater withdrawal and use. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11155–11162.

    Article  Google Scholar 

  • Holmberg, J., & Robert, K. H. (2000). Backcasting from non-overlapping sustainability principles: A framework for strategic planning. International Journal of Sustainable Development and World Ecology, 74, 291–308.

    Article  Google Scholar 

  • Johnston, L., & Williamson, S. H. (2005). The annual real and nominal GDP for the United States, 1789—Present. Economic History Services. Retrieved from http://www.eh.net/hmit/gdp/

  • Kenny, J. F., Barber, N. L., Hutson, S. S., Linsey, K. S., Lovelace, J. K., & Maupin, M. A. (2009). Estimated use of water in the United States in 2005. United States Geological Survey Circular 1344. Retrieved from http://pubs.usgs.gov/circ/1344/.

  • Lovins, A. B. (1976). Energy strategy: The road not taken? Foreign Affairs, 55, 63–96.

    Article  Google Scholar 

  • Lovins, A. B. (1977). Soft energy paths: Toward a durable peace. San Francisco: Friends of the Earth, International.

    Google Scholar 

  • Pacala, S., & Socolow, R. (2004). Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science, 305, 968–972.

    Article  Google Scholar 

  • Palaniappan, M., Gleick, P. H., Allen, L., Cohen, M. J., Christian-Smith, J. and Smith, C. (ed. N. Ross) 2010. Clearing the waters: A focus on water quality solutions. Nairobi, Kenya: UNEP/Pacific Institute. Retrieved from http://www.pacinst.org/reports/water_quality/clearing_the_waters.pdf

  • Phdungsilp, A. (2011). Futures studies’ backcasting method used for strategic sustainable city planning. Futures, 43, 707–714.

    Article  Google Scholar 

  • Quist, J. (2007, May10). Backcasting for sustainable futures and system innovations. TiSD–Colloquium advanced course. Delft, The Netherlands: Delft University of Technology.

    Google Scholar 

  • Raskin, P., Gallopin, G., Gutman, P., Hammond, A. and Swart, R. 1998. Bending the curve: Toward global sustainability. Polestar series report No. 8. Boston: Stockholm Environment Institute.

    Google Scholar 

  • Raskin, P., Gleick, P., Kirshen, P., Kirshen, G., & Strzepek, K. (1997). Water futures: Assessment of long-range patterns and problems. Boston: Stockholm Environment Institute.

    Google Scholar 

  • Robinson, J. B. (1982). Energy backcasting: A proposed method of policy analysis. Energy Policy, 10, 337–344.

    Article  Google Scholar 

  • Rosegrant, M. W., Cai, X., & Cline, S. A. (2002). World water and food to 2025: Dealing with scarcity. Washington, DC: International Food Policy Research Institute.

    Google Scholar 

  • Schwartz, P. (1991). The art of the long view. New York: Currency/Doubleday Press.

    Google Scholar 

  • Seckler, D., Amarasinghe, U., Molden, D., de Silva, R., & Barker, R. (1998). World water demand and supply, 1990 to 2025: Scenarios and issues. Colombo, Sri Lanka: International Water Management Institute (Research Report 19).

    Google Scholar 

  • Shiklomanov, I. A. (1998). Assessment of water resources and water availability in the world.. St. Petersburg, Russia: State Hydrological Institute (Report for the Comprehensive Assessment of the Freshwater Resources of the World, United Nations. Data Archive on CD-ROM).

    Google Scholar 

  • The Natural Step (2012) Backcasting. Retrieved from http://www.naturalstep.org/backcasting

  • UNEP/RIVM (United Nations Environment Programme and Rijksinstituut voor Volksgezondheid en Milieu). (2004). The GEO-3 scenarios 2002–2032. Quantification and Analysis of Environmental Impacts, ed. J. Potting and J. Bakkes. Nairobi, Kenya: PBL Netherlands Environmental Assessment Agency.

    Google Scholar 

  • USGS (United States Geological Survey). (2012). National streamflow information program. Reston, VA. Retrieved from http://water.usgs.gov/nsip/history1.html

  • Weaver, P., Jansen, L., van Grootveld, G., van Spiegel, E., & Vergragt, P. (2000). Sustainable technology development. Sheffield, UK: Greenleaf.

    Google Scholar 

  • Wolff, G., & Gleick, P. H. (2002). The soft path for water. In P. H. Gleick (Ed.), The world’s water 2002–2003: The biennial report on freshwater resources (pp. 1–32). Washington, DC: Island Press.

    Google Scholar 

  • WWAP (World Water Assessment Programme). (2009). World water development report 3. Paris, France: UNESCO.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Consortia

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Calouste Gulbenkian Foundation

About this chapter

Cite this chapter

Gulbenkian Think Tank on Water and the Future of Humanity. (2014). Water Projections and Scenarios: Thinking About Our Future. In: Water and the Future of Humanity. Springer, Cham. https://doi.org/10.1007/978-3-319-01457-9_8

Download citation

Publish with us

Policies and ethics