Skip to main content

Water Management in a Variable and Changing Climate

  • Chapter
  • First Online:
Book cover Water and the Future of Humanity

Abstract

The world is changing, the climate is changing, and the future is uncertain. Yet we know that through our actions we can influence what our future will be. So, the question is not whether climate variability is increasing and climate change is occurring, but how can we now understand the changes and manage water for an uncertain future. Analyses of the climatic changes already observed, and the associated improvements in the methodologies we use to understand climate change and variability, have allowed us to develop improved scenarios of what the future may bring. They have also helped us to reduce the uncertainties in what we know. Because of the new technologies and our increased understanding of how to manage the risks, the remaining uncertainties can be viewed as opportunities for designing, managing, and operating our water resource infrastructure in more effective and robust ways across a wider range of possible uses and futures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 44.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam, J., & Lettenmaier, D. (2008). Application of new precipitation and reconstructed streamflow products to streamflow trend attribution in Northern Eurasia. Journal of Climate, 21(8), 1807–1828.

    Article  Google Scholar 

  • ADB (Asian Development Bank). (2010). Strengthening the resilience of the water sector in Khulna to climate change. Manila, Philippines: ADB (Final Report ADB TA–7197).

    Google Scholar 

  • Asseng, S., Travasso, M. I., Ludwig, F., & Magrin, G. O. (2013). Has climate change opened new opportunities for wheat cropping in Argentina? Climatic Change, 117(1–2), 181–196. doi:10.1007/s10584-012-0553-y.

    Article  Google Scholar 

  • Barnett, T. P., Adam, J., & Lettenmaier, D. P. (2005). Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303–309.

    Article  Google Scholar 

  • Bates, B. C., Kundzewicz, Z. W., Wu, S., & Palutikof, J. P. (2008). Climate change and water. Geneva, Switzerland: Intergovernmental Panel on Climate Change (IPCC Technical Paper VI).

    Google Scholar 

  • Choudhury, G. A., van Scheltinga, C. T., van den Bergh, D., Chowdhury, F., de Heer, J., Hossain, M., et al. (2012). Preparations for the Bangladesh delta plan. Wageningen, Netherlands: Alterra Wageningen.

    Google Scholar 

  • de Wit, M., & Stankiewicz, J. (2006). Changes in surface water supply across Africa with predicted climate change. Science, 311(5769), 1917–1921.

    Article  Google Scholar 

  • Deltacommissie (Delta Commission). (2008). Working together with water: A living land builds for its future. Amsterdam, Netherlands: Deltacommissie. Retrieved from http://bit.ly/bKtIHw

  • FAO (Food and Agriculture Organization of the United Nations). (2002). Crops and drops: Making the best use of water for agriculture. Rome, Italy: FAO.

    Google Scholar 

  • Fischer, G., Shah, M., & van Velthuizen, H. (2002). Climate change and agricultural vulnerability. Laxenburg, Austria: IIASA.

    Google Scholar 

  • Fischer, G., Tubiello, F., van Velthuizen, H., & Wiberg, D. A. (2007). Climate change impacts on irrigation water requirements: Effects of mitigation 1990–2080. Technological Forecasting and Social Change, 74, 1083–1107.

    Article  Google Scholar 

  • Gudmundsson, L., Tallaksen, L., & Stahl, K. (2011). Projected changes in future runoff variability—A multi-model analysis using the A2 emission scenario. WATCH Technical Report 49.

    Google Scholar 

  • Haddeland, I., Clark, D. B., Franssen, W., Ludwig, F., Voß, F., Arnell, N. W., et al. (2011). Multimodel estimate of the global terrestrial water balance: Setup and first results. Journal of Hydrometeorology, 12, 869–884.

    Article  Google Scholar 

  • Hagemann, S., Chen, C., Haerter, J. O., Heinke, J., Gerten, D., & Piani, C. (2011). Impact of a statistical bias correction on the projected hydrological changes obtained from three GCMs and two hydrology models. Journal of Hydrometeorology, 12, 556–578.

    Article  Google Scholar 

  • Hansen, J. W., Challinor, A., Ines, A., Wheeler, T., & Moron, V. (2006). Translating climate forecasts into agricultural terms: Advances and challenges. Climate Research, 33, 27–41.

    Article  Google Scholar 

  • Heilig, G. (1999). China food: Can China feed itself. Laxenburg, Austria: International Institute for Applied Systems Analysis.

    Google Scholar 

  • IIASA/FAO (International Institute for Applied Systems Analysis/Food and Agriculture Organization of the United Nations). (2012). Global agro‐ecological zones. IIASA/FAO: Laxenburg, Austria/Rome, Italy (GAEZ v3.0).

    Google Scholar 

  • Inman, M. (2009, January 15). Where warming hits hard. Nature Reports, Climate Change. Retrieved from doi:10.1038/climate.2009.3

  • IPCC (Intergovernmental Panel on Climate Change). (2007). Climate change 2007: The physical science basis. Fourth Assessment Report, IPCC.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). (2012). Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II, IPCC.

    Google Scholar 

  • Jacob, D., & van den Hurk, B. (2009). Climate change scenarios at global and local scales. In F. Ludwig, P. Kabat, H. van Schaik, & M. van der Valk (Eds.), Climate change adaptation in the water sector (pp. 23–34). London, UK: Earthscan.

    Google Scholar 

  • Kabat, P., Fresco, L. O., Stive, M. J., Veerman, C. P., van Alphen, J. S., Parmet, B. W., et al. (2009). Dutch coasts in transition. Nature Geoscience, 2, 450–452.

    Article  Google Scholar 

  • Kabat, P., van Vierssen, W., Veraart, J., Vellinga, P., & Aerts, J. (2005). Climate proofing the Netherlands. Nature, 438, 283–284.

    Article  Google Scholar 

  • Lindsey, R. (2009). NASA: Earth observatory. Retrieved from http://earthobservatory.nasa.gov/Features/EnergyBalance/

  • Ludwig, F., & Moench, M. (2009). The impacts of climate change on water. In F. Ludwig, P. Kabat, H. van Schaik, & M. van der Valk (Eds.), Climate change adaptation in the water sector (pp. 35–51). London, UK: Earthscan.

    Google Scholar 

  • Mark, B., & Selzer, G. (2003). Tropical glacier melt water contribution to stream discharge: A case study in the Cordillera Blanca, Peru. Journal of Glaciology, 49(165), 271–281.

    Article  Google Scholar 

  • Middelkoop, H., Daamen, K., Gellens, D., Grabs, W., Kwadijk, J., Lang, H., et al. (2001). Impact of climate change on hydrological regimes and water resources management in the Rhine Basin. Climatic Change, 49(1–2), 105–128.

    Article  Google Scholar 

  • Milly, P. C., Dune, K. A., & Vecchia, A. V. (2005). Global pattern trends in streamflow and water availability in a changing climate. Nature, 438, 347–350.

    Article  Google Scholar 

  • Nicholson, S. (2005). On the question of the ‘recovery’ of the rains in the West African Sahel. Journal of Arid Environments, 63(3), 615–641.

    Article  Google Scholar 

  • Oerlemans, J. (2005). Extracting a climate signal from 169 glacier records. Science, 308(5722), 675–677.

    Article  Google Scholar 

  • Piani, C., Weedon, G. P., Best, M., Gomes, S. M., Viterbo, P., Hagemann, S., et al. (2010). Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. Journal of Hydrology, 395(3–4), 199–215.

    Article  Google Scholar 

  • Power, S., Sadler, B., & Nicholls, N. (2005). The influence of climate science on water management in Western Australia. Bulletin of the American Meteorological Society, 86(6), 839–844.

    Article  Google Scholar 

  • Preston, B., Smith, T., Brooke, C., Gorddard, R., Measham, T., Withycombe, G., et al. (2008). Mapping climate change vulnerability in the Sydney Coastal Councils Group. Hobart, TAS, Australia: CSIRO Marine and Atmospheric Research.

    Google Scholar 

  • Sharma, D., Das Gupta, A., & Babel, M. S. (2007). Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand. Hydrology and Earth System Sciences, 11, 1373–1390.

    Article  Google Scholar 

  • Smith, I. (2004). An assessment of recent trends in Australian rainfall. Australian Meteorological Magazine, 53, 163–173.

    Google Scholar 

  • Stern, N. (2007). The economics of climate change: The Stern review. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Usman, M. T., & Reason, C. J. (2004). Dry spell frequencies and their variability over southern Africa. Climate Research, 26, 199–211.

    Article  Google Scholar 

  • van den Hurk, B., & Jacob, D. (2009). The art of predicting climate variability and change. In F. Ludwig, P. Kabat, H. van Schaik, & M. van der Valk (Eds.), Climate change adaptation in the water sector (pp. 9–22). London, UK: Earthscan.

    Google Scholar 

  • van Vliet, M. T., Yearsley, J. R., Ludwig, F., Vögele, S., Lettenmaier, D. P., & Kabat, P. (2012, June 4). Vulnerability of US and European electricity supply to climate change. Nature Climate Change. Retrieved from doi:10.1038/nclimate1546.

  • Webster, P. J., Holland, G., Curry, J., & Chang, H. R. (2005). Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309(5742), 1844–1846.

    Article  Google Scholar 

  • Weedon, G. P., Gomes, S., Viterbo, P., Österle, H., Adam, J. C., Bellouin, N., et al. (2010). The WATCH forcing data 1958–2001: A meteorological forcing dataset for land surface and hydrological models. WATCH. Retrieved from http://www.eu-watch.org/publications/technical-reports

  • Wouters, P., Hu, D., Zhang, J., Tarlock, A. D., & Andrews-Speed, P. (2004). The new development of water law in China. University of Denver Water Law Review, 7(2), 243–308.

    Google Scholar 

  • Zhou, B., & Wang, Q. (2009). Strategy adjustment in flood control, disaster reduction and flood risk management. Water Conservancy Science and Technological and Economy, 15(4), 319–320.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Consortia

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Calouste Gulbenkian Foundation

About this chapter

Cite this chapter

Gulbenkian Think Tank on Water and the Future of Humanity. (2014). Water Management in a Variable and Changing Climate. In: Water and the Future of Humanity. Springer, Cham. https://doi.org/10.1007/978-3-319-01457-9_3

Download citation

Publish with us

Policies and ethics