Advertisement

IMD: A Typical Massively Parallel Molecular Dynamics Code for Classical Simulations – Structure, Applications, Latest Developments

  • Johannes Roth
Conference paper

Abstract

We give a short description of IMD, a classical molecular dynamics package for the simulation of condensed matter. The properties of molecular dynamics simulations will be given with examples of their implementation in IMD. We further report on multi-scale simulations with IMD, the determination of accurate interactions with potfit and the porting of IMD to GPUs.

Keywords

Molecular Dynamic Simulation Thread Block Classical Molecular Dynamic Simulation Ewald Summation External Library 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abraham, F.F., Walkup, R., gao, H., Duchaineau, M., Diaz De La Rubia, T., Seager, M., Simulating materials failure by using up to one billion atoms and the world’s fastest computer: Brittle fracture. Proc. Nat. Acad. Sci 99 5777–5782 (2002). Abraham, F.F., Walkup, R., gao, H., Duchaineau, M., Diaz De La Rubia, T., Seager, M., Simulating materials failure by using up to one billion atoms and the world’s fastest computer: Work hardening. Proc. Nat. Acad. Sci 99 5783–5787 (2002).Google Scholar
  2. 2.
    Allen, M.P., Tildesley, D.J. Computer simulations of liquids, Oxford University Press 1987.Google Scholar
  3. 3.
    Beck, P., Brommer, P., Roth, J., Trebin, H.-R., Ab initio based polarizable force field generation and application to liquid silica and magnesia. J. Chem. Phys. 135 234512 (2011).CrossRefGoogle Scholar
  4. 4.
    Beck, P., Brommer, P., Roth, J., Trebin, H.-R., Influence of polarizability on metal oxide propeties studied by molecular dynamics simulations. J. Cond. Matt. 24 485401 (2012).CrossRefGoogle Scholar
  5. 5.
    Brommer, P., Gähler, F., Potfit: effective potentials from ab-initio data. Modelling Simul. Mater. Sci. Eng. 15 295–304 (2007).CrossRefGoogle Scholar
  6. 6.
    Brommer, P., Gähler, F., Mihalcovič, M., Ordering and correlation of cluster orientations in CaCd6, Phil. Mag. 87 2671–2677 (2007).CrossRefGoogle Scholar
  7. 7.
    Brommer, P., Beck, P., Chatzopoulos, A., Gähler, F., Roth, J., Trebin, H.-R., Direct Wolf summation of a polarizable force field for silica. J. Chem. Phys. 132 194109 (2010).CrossRefGoogle Scholar
  8. 8.
    Buehler, M.J., Dodson, J., van Duin A.C.T., Meulbroek, P., Goddard, W. A., The Computational Materials Design Facility (CMDF): A powerful framework for multiparadigm multi-scale simulations, Mat. Res. Soc. Proceedings (Combinatorial Methods and Informatics in Materials Science), 894, LL3.8 (2006).Google Scholar
  9. 9.
    Elsener A. Politano, O., Derlet, P.M., Van Swygenhoven, H., Mod. Sim. Mat. Sci. Eng. 16 025006 (2008).Google Scholar
  10. 10.
    Hocker, S., Beck, P., Schmauder, S., Roth, J., Trebin, H.-R., Simulation of crack propagation in alumina with ab initio based polarizable force field. J. Chem. Phys. 136 084707 (2012).CrossRefGoogle Scholar
  11. 11.
    Euchner, H., Mihalcovič, M., Gähler, F., Johnson, M.R., Schober, H., Rols, S., Suard, E., Bosak, A., Ohhashi, S., Tsai, A.-P., Lidin, S., Pay Gomez, C., Custers, J., Paschen, S., de Boissieu, M., Anomalous vibrational dynamics in the Mg2Zn11 phase, Phys. Rev. B 83 144202 (2011).CrossRefGoogle Scholar
  12. 12.
    Germann, T.C., Kadau, K., Trillion-atom molecular dynamics becomes reality, Int. J. Mod. Phys. C 1315–1319 (2007).Google Scholar
  13. 13.
    Roth, J., Shock waves in complex binary solids: Cubic Laves crystals, quasicrystals, and amorphous solids, Phys. Rev. B 71, 064102 (2005).CrossRefGoogle Scholar
  14. 14.
    Roth, J., Shock waves in materials with Dzugutov-potential interactions, Phys. Rev. B 72, 014125 (2005).CrossRefGoogle Scholar
  15. 15.
    Roth, J., ω-phase and solitary waves induced by shock compression of bcc crystals, Phys. Rev. B 72, 014126 (2005).Google Scholar
  16. 16.
    Roth, J., Gähler, F., Trebin, H.-R., A molecular dynamics run with 5.180.116.000 particles. Int. J. Mod. Phys. C 11, 317–322 (2000).Google Scholar
  17. 17.
    Roth, J., Karlin, J., Sartison, M., Kraus̈, A., Trebin, H.-R., Molecular dynamics simulations of laser ablation in metals: parameter dependence, extended models and double pulses, in High Performance Computing in Science and Engineering ’12, eds. W.E.Nagel, D.B. Kröner, M.M. Resch, Springer Heidelberg, 2013, in print.Google Scholar
  18. 18.
    Roth, J., Trichet, C., Trebin, H.-R., Sonntag, S., Laser ablation of metals, in High Performance Computing in Science and Engineering ’10, eds. W.E.Nagel, D.B. Kröner, M.M. Resch, Springer Heidelberg, 2011, pp. 159–168.Google Scholar
  19. 19.
    Sonntag, S., Roth, J., Gähler, F., Trebin, H.-R., Femtosecond Laser Ablation of Aluminum, Appl. Surf. Sci. 255 9742 (2009).CrossRefGoogle Scholar
  20. 20.
    Sonntag, S., Trichet Paredes, C., Roth, J., Trebin, H.-R., Molecular Dynamics Simulations of Cluster Distribution from Femtosecond Laser Ablation in Aluminum, Appl. Phys. A 101 559–565 (2011).CrossRefGoogle Scholar
  21. 21.
    Streitz, F.H., Mintmire, J.W., Electrostatic potentials for metal-oxide surfaces and interfaces. Phys. Rev. B 50 11996–12003 (1994).CrossRefGoogle Scholar
  22. 22.
    Stadler, J., Mikulla, R., Trebin, H.-R., IMD: A software package for molecular dynamics studies on parallel computers. Int. J. Mod. Phys. C 8, 1131–1140 (1997).CrossRefGoogle Scholar
  23. 23.
    Tangney, P., Scandalo, S., An ab initio parametrized interatomic force field for silica. J. Chem. Phys. 117 8898–8904 (2002).CrossRefGoogle Scholar
  24. 24.
    Tredak, P., Lewinski, B., Ligowski, L., Wejranowski, T.,Rudniki, W.R., Large scale molecular dynamics simulations of materials on GPU clusters, PreprintGoogle Scholar
  25. 25.
    Vrabec, J., private communicationGoogle Scholar
  26. 26.
    Wolf, D., Keblinski, P.,Philipot, S.R., Eggebrecht, J., Exact method for the simulation of Coulombic sysztems by spherically truncated, pairwise r  − 1 summation. J. Chem. Phys. 110 8254–8282 (1999).CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Institut für Funktionelle Materalien und QuantentechnologienUniversität StuttgartStuttgartGermany

Personalised recommendations