Skip to main content

Li Partitioning, Diffusion and Associated Isotopic Fractionation: Theoretical and Experimental Insights

  • Chapter
  • First Online:
Advances in Lithium Isotope Geochemistry

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

Laboratory experiments on the partitioning of elements and isotopes between various phases (minerals, fluids, and melts) at thermodynamic equilibrium are fundamental to the interpretation of geochemical data. We compile and discuss in this chapter the measured partition coefficients of Li and Li isotopes between various phases (mineral–melt, mineral–fluid, and mineral–mineral), and the measured diffusion coefficients of Li in minerals, fluids, and melts. Furthermore, we present and discuss consequences of diffusive fractionation of Li isotopes. Based on the information compiled for partitioning and diffusion behavior of Li, we finally discuss experiments on fluid–rock interaction with special emphasis on the behavior of Li.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam J, Green T (2006) Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behavior. Contrib Mineral Petrol 152:1–17

    Article  Google Scholar 

  • Aigner-Torres M, Blundy J, Ulmer P, Pettke T (2007) Laser ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: an experimental approach. Contrib Mineral Petrol 153:647–667

    Article  Google Scholar 

  • Armbruster T, Irouschek A (1983) Cordierites from the Lepontine Alps: Na + Be - > Al substitution, gas content, cell parameters, and optics. Contrib Mineral Petrol 82:389–396

    Article  Google Scholar 

  • Beattie P (1994) Systematics and energetics of trace-element partitioning between olivine and silicate melts: implications for the nature of mineral/melt partitioning. Chemi Geol 117:57–71

    Google Scholar 

  • Beck P, Chaussidon M, Barrat JA, Gillet Ph, Bohn M (2006) Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: the case of pyroxene phenocrysts from nakhlite meteorites. Geochim Cosmochim Acta 70:4813–4825

    Article  Google Scholar 

  • Behrens H, Zhang Y (2001) Ar diffusion in hydrous silicic melts: implications for volatile diffusion mechanisms and fractionation. Earth Planet Sci Lett 192:363–376

    Article  Google Scholar 

  • Bennett S, Blundy J, Elliott J (2004) The effect of sodium and titanium on crystal-melt partitioning of trace elements. Geochim Cosmochim Acta 68:2335–2347

    Article  Google Scholar 

  • Berger G, Schott J, Loubet M (1987) Fundamental processes controlling the first stage of alteration of a basalt glass by seawater: an experimental study between 200 and 320 °C. Earth Planet Sci Lett 84:431–445

    Article  Google Scholar 

  • Berger G, Schott J, Guy C (1988) Behavior of Li, Rb, and Cs during basalt glass and olivine dissolution and chlorite, smectite and zeolite precipitation from sea water: experimental investigations and modelization between 50 °C and 300 °C. Chem Geol 71:297–312

    Article  Google Scholar 

  • Berger G, Claparols C, Guy C, Daux V (1994) Dissolution rate of a basalt glass in silica-rich solutions: implications for long-term alteration. Geochim Cosmochim Acta 58:4875–4886

    Article  Google Scholar 

  • Bindeman I, Davis A (2000) Trace element partitioning between plagioclase and melt: investigation of dopant influence on partition behaviour. Geochim Cosmochim Acta 64:2863–2878

    Article  Google Scholar 

  • Bindeman IN, Davis AM, Drake MJ (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentration level of trace elements. Geochim Cosmochim Acta 62:1175–1193

    Google Scholar 

  • Blundy J (1997) Experimental study of a Kiglapait marginal rock and implications for trace element partitioning in layered intrusions. Chem Geol 141:73–92

    Article  Google Scholar 

  • Blundy J, Dalton J (2000) Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. Contrib Mineral Petrol 139:356–371

    Article  Google Scholar 

  • Blundy JD, Wood BJ (1991) Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochim Cosmochim Acta 55:193–209

    Google Scholar 

  • Blundy J, Wood B (1994) Prediction of crystal–melt partition-coefficients from elastic moduli. Nature 372:452–454

    Article  Google Scholar 

  • Blundy JD, Falloon TJ, Wood BJ, Dalton JA (1995) Sodium partitioning between clinopyroxene and silicate melts. J Geophys Res 100:15501–15516

    Google Scholar 

  • Blundy J, Wood B (2003a) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210:383–397

    Article  Google Scholar 

  • Blundy J, Wood B (2003b) Mineral-melt partitioning of uranium, thorium and their daughters. In: Bourdon B et al (eds) Uranium-series geochemistry. Rev Miner Geochem 52:39–123

    Google Scholar 

  • Blundy J, Robinson J, Wood B (1998) Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth Planet Sci Lett 160:493–504

    Article  Google Scholar 

  • Bokshtein BS, Bokshtein SZ, Zhukhovitskii AA (1985) Thermodynamics and kinetics of diffusion in solids. Oxonian Press, New Delhi, 310 pp

    Google Scholar 

  • Bottinga Y, Javoy M (1973) Comments on oxygen isotope geothermometry. Earth Planet Sci Lett 20:250–265

    Google Scholar 

  • Brady JB (1983) Intergranular diffusion in metamorphic rocks. Am J Sci 283:181–200

    Google Scholar 

  • Brady JB, Cherniak DJ (2010) Diffusion in minerals: an overview of published experimental diffusion data. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Rev Mineral Geochem 72:899–920

    Google Scholar 

  • Brant C, Coogan LA, Gillis KM, Seyfried WE, Pester NJ, Spence J (2012) Lithium and Li-isotopes in young altered upper oceanic crust from the East Pacific Rise. Geochim Cosmochim Acta 96:272–293

    Article  Google Scholar 

  • Brenan JM, Neroda E, Lundstrom CC, Shaw HF, Ryerson FJ, Phinney DL (1998a) Behaviour of boron, beryllium, and lithium during melting and crystallization: constraints from mineral-melt partitioning experiments. Geochim Cosmochim Acta 62:2129–2141

    Article  Google Scholar 

  • Brenan JM, Ryerson FJ, Shaw HF (1998b) The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium and lithium during subduction: experiments and models. Geochim Cosmochim Acta 62:3337–3347

    Article  Google Scholar 

  • Brice JC (1975) Some thermodynamic aspects of the growth of strained crystals. J Cryst Growth 28:249–253

    Article  Google Scholar 

  • Caciagli N, Brenan JM, McDonough WF, Phinney D (2011) Mineral–fluid partitioning of lithium and implications for slab–mantle interaction. Chem Geol 280:384–398

    Article  Google Scholar 

  • Cahalan RC, Kelly ED, Carlson WD (2014) Rates of Li diffusion in garnet: coupled transport of Li and Y plus REEs. Am Mineral 99:1676–1682

    Article  Google Scholar 

  • Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon Press, Oxford, 510 pp

    Google Scholar 

  • Chakraborty S (1995) Diffusion in silicate melts. Rev Mineral 32:411–503

    Google Scholar 

  • Chakraborty S (2008) Diffusion in solid silicates: a tool to track timescales of processes comes of age. Annu Rev Earth Planet Sci 36:153–190

    Article  Google Scholar 

  • Chan LH, Gieskes JM, You CF, Edmond JM (1994) Lithium isotope geochemistry of sediments and hydrothermal fluids of the Guaymas Basin, Gulf of California. Geochim Cosmochim Acta 58:4443–4454

    Article  Google Scholar 

  • Charlier BLA, Morgan DJ, Wilson CJN, Wooden JL, Allan ASR, Baker JA (2012) Lithium concentration gradients in feldspar and quartz record the final minutes of magma ascent in an explosive supereruption. Earth Planet Sci Lett 319–320:218–227

    Article  Google Scholar 

  • Cherniak DJ (2010) Cation diffusion in feldspars. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Rev Mineral Geochem 72:691–733

    Google Scholar 

  • Cherniak DJ, Watson EB (2010) Li diffusion in zircon. Contrib Mineral Petrol 160:383–390

    Article  Google Scholar 

  • Chopra R, Richter FM, Watson EB, Scullard CR (2012) Magnesium isotope fractionation by chemical diffusion in natural settings and in laboratory analogues. Geochim Cosmochim Acta 88:1–18

    Article  Google Scholar 

  • Coogan LA (2011) Preliminary experimental determination of the partitioning of lithium between plagioclase crystals of different anorthite contents. Lithos 125:711–715

    Article  Google Scholar 

  • Coogan LA, Kasemann SA, Chakraborty S (2005) Rates of hydrothermal cooling of new oceanic upper crust derived from lithium-geospeedometry. Earth Planet Sci Lett 240:415–424

    Article  Google Scholar 

  • Corgne A, Wood B (2005) Trace element partitioning and substitution mechanisms in calcium perovskites. Contrib Mineral Petrol 149:85–97

    Article  Google Scholar 

  • Corgne A, Liebske C, Wood BJ, Rubie DC, Frost DJ (2005) Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochim Cosmochim Acta 69:485–496

    Article  Google Scholar 

  • Costa F, Chakraborty S (2004) Decadal time gaps between mafic intrusion and silicic eruption obtained from chemical zoning patterns in olivine. Earth Planet Sci Lett 227:517–530

    Article  Google Scholar 

  • Costa F, Dohmen R, Chakraborty S (2008) time scales of magmatic processes from modelling the zoning patterns of crystals. In: Putirka, KD, Tepley FJ III (eds) Minerals, inclusions and volcanic processes. Rev Mineral Geochem 69:545–594

    Google Scholar 

  • Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, Oxford. viii + 414 pp

    Google Scholar 

  • Cunningham GJ, Henderson P, Lowry RK, Nolan J, Reed SJB, Long JVP (1983) Lithium diffusion in silicate melts. Earth Planet Sci Lett 65:203–205

    Article  Google Scholar 

  • Decarreau A, Vigier N, Pálková H, Petit S, Vieillard P, Fontaine C (2012) Partitioning of lithium between smectite and solution: an experimental approach. Geochim Cosmochim Acta 85:314–325

    Article  Google Scholar 

  • Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274

    Article  Google Scholar 

  • Dohmen R, Blundy J (2014) A predictive thermodynamic model for element partitioning between plagioclase and melt as a function of pressure, temperature and composition. Am J Sci 314:1319–1372

    Article  Google Scholar 

  • Dohmen R, Chakraborty S (2007) Fe-Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine. Phys Chem Miner 34:409–430

    Article  Google Scholar 

  • Dohmen R, Milke R (2010) Diffusion in polycrystalline materials: grain boundaries, mathematical models, and experimental data. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Rev Mineral Geochem 72:921–970

    Google Scholar 

  • Dohmen R, Kasemann SA, Coogan LA, Chakraborty S (2010) Diffusion of Li in olivine. Part 1: Experimental observations and a multiple species diffusion model. Geochim Cosmochim Acta 74:274–292

    Article  Google Scholar 

  • Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann D Phys 17:549

    Article  Google Scholar 

  • Elkins L, Gaetani G, Sims K (2008) Partitioning of U and Th during garnet pyroxenite partial melting: constraints on the source of alkaline ocean island basalts. Earth Planet Sci Lett 265:270–286

    Article  Google Scholar 

  • Evensen J, London D (2003) Experimental partitioning of Be, Cs, and other trace elements between cordierite and felsic melt, and the chemical signature of S-type granite. Contrib Mineral Petrol 144:739–757

    Article  Google Scholar 

  • Eyring H (1936) Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J Chem Phys 4:283–291

    Article  Google Scholar 

  • Faak K, Chakraborty S, Coogan L (2013) Mg in plagioclase: experimental calibration of a new geothermometer and diffusion coefficients. Geochim Cosmochim Acta 123:195–217

    Article  Google Scholar 

  • Fabbrizio A, Stalder R, Hametner K, Günther D, Marquardt K (2013) Experimental partitioning of halogens and other trace elements between olivine, pyroxenes, amphibole and aqueous fluid at 2 GPa and 900–1,300 °C. Contrib Mineral Petrol 166:639–653

    Article  Google Scholar 

  • Flynn CP (1972) Point defects and diffusion. Clarendon Press, Oxford, 826 pp

    Google Scholar 

  • Frei D, Liebscher A, Franz G, Wunder B, Klemme S, Blundy J (2009) Trace element partitioning between orthopyroxene and anhydrous silicate melt on the lherzolite solidus from 1.1 to 3.2 GPa and 1,230 to 1,535 degrees C in the model system Na2O-CaO-MgO-Al2O3-SiO2. Contrib Mineral Petrol 157:473–490

    Article  Google Scholar 

  • Gaetani G, Kent A, Grove T, Hutchenson I, Stolper E (2003) Mineral/melt partitioning of trace elements during hydrous peridotite partial melting. Contrib Mineral Petrol 145:391–405

    Article  Google Scholar 

  • Gallagher K, Elliott T (2009) Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling. Earth Planet Sci Lett 278:286–296

    Article  Google Scholar 

  • Ganguly J (2002) Diffusion kinetics in minerals: Principles and applications to tectono-metamorphic processes. EMU notes in mineralogy, vol 4. Chapter 10:271–309

    Google Scholar 

  • Ganguly J (2008) Thermodynamics in earth and planetary sciences. Springer-Verlag Berlin Heidelber, 501 pp

    Google Scholar 

  • Giletti BJ, Shanahan TM (1997) Alkali diffusion in plagioclase feldspar. Chem Geol 139:3–20

    Article  Google Scholar 

  • Glicksman ME (2000) Diffusion in solids: field theory, solid state principles and applications. Wiley, 498 pp

    Google Scholar 

  • Gordillo CE, Schreyer W, Werding G, Abraham K (1985) Lithium in NaBe-cordierites from El Peñón, Sierrra de Córdoba, Argentina. Contrib Mineral Petrol 90:93–101

    Article  Google Scholar 

  • Grant KJ, Wood BJ (2010) Experimental study of the incorporation of Li, Sc, Al and other trace elements into olivine. Geochim Cosmochim Acta 74:2412–2428

    Article  Google Scholar 

  • Hajash A (1975) Hydrothermal processes along mid-ocean ridges: an experimental investigation. Contrib Mineral Petrol 53:205–226

    Article  Google Scholar 

  • Halama R, Savov IP, Rudnick RL, McDonough WF (2009) Insights into Li and Li isotope cycling and sub-arc metasomatism from veined mantle xenoliths, Kamchatka. Contrib Mineral Petrol 158:197–222

    Google Scholar 

  • Hanrahan M, Brey G, Woodland A, Altherr R, Seitz H-M (2009) Towards a Li barometer for bimineralic eclogites: experiments in CMAS. Contrib Mineral Petrol 158:169–183

    Article  Google Scholar 

  • Hart SR, Dunn T (1993) Experimental Cpx–melt partitioning of 24 trace-elements. Contrib Mineral Petrol 113:1–8

    Article  Google Scholar 

  • Hashin Z, Shtrikman S (1963) Conductivity of polycrystals. Phys Rev 130:129–133

    Article  Google Scholar 

  • Hawthorne FC, Oberti R, Ungaretti L, Grice JD (1992) Leakeite, NaNa(MgFe3+Li)SiO(OH), a new alkali amphibole from the Kajlidongri manganese mine, Jhabua district, Madhya Pradesh, India. Am Mineral 77:1112–1115

    Google Scholar 

  • Hawthorne FC, Ungaretti L, Oberti R, Bottazzi P, Czamanske GK (1993) Li: an important component in igneous alkali amphiboles. Am Mineral 78:733–745

    Google Scholar 

  • Hawthorne FC, Ungaretti L, Oberti R, Cannillo E (1994) The mechanism of [6]Li incorporation in amphiboles. Am Mineral 79:443–451

    Google Scholar 

  • Hawthorne FC, Oberti R, Ottolini L, Foord EE (1996a) Lithium-bearing fluor-arfvedsonite from Hurricane Mountain, New Hampshire: a crystal-chemical study. Can Mineral 34:1015–1019

    Google Scholar 

  • Hawthorne FC, Oberti R, Ungaretti L, Ottolini L, Grice JD, Czamanske GK (1996b) Fluor-ferro- leakeite, NaNa2(Fe2+Fe2 3+Li)Si8O22F2, a new alkali amphibole from the Canada Pinabete Pluton, Questa, New Mexico, U.S.A. Am Mineral 81:226–228

    Google Scholar 

  • Hill E, Wood B, Blundy J (2000) The effect of Ca-Tschermaks component on trace element partitioning between clinopyroxene and silicate melt. Lithos 53:203–215

    Article  Google Scholar 

  • Huang F, Lundstrom C, Mcdonough W (2006) Effect of melt structure on trace-element partitioning between clinopyroxene and silicic, alkaline, aluminous melts. Am Mineral 91:1385–1400

    Article  Google Scholar 

  • Icenhower J, London D (1995) An experimental study of element partitioning among biotite, muscovite and coexisting peraluminous silicic melt at 200 MPa (H O). Am Mineral 80:1229–1251

    Google Scholar 

  • Ito J (1977) Crystal synthesis of a new olivine, LiScSiO4. Am Mineral 62:356–361

    Google Scholar 

  • Jahn S, Wunder B (2009) Lithium speciation in aqueous fluids at high P and T studied by ab initio molecular dynamics and consequences for Li-isotope fractionation between minerals and fluids. Geochim Cosmochim Acta 73:5428–5434

    Article  Google Scholar 

  • Jambon A, Semet MP (1978) Lithium diffusion in silicate glasses of albite orthoclase and obsidian compositions: an ion-microprobe determination. Earth Planet Sci Lett 37:445–450

    Article  Google Scholar 

  • James RH, Allen DE, Seyfried WE (2003) An experimental study of alteration of oceanic crust and terrigenous sediments at moderate temperatures (51 to 350 °C): insights as to chemical processes in near-shore ridge-flank hydrothermal systems. Geochim Cosmochim Acta 67:681–691

    Article  Google Scholar 

  • Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper K, Brooker R (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218

    Article  Google Scholar 

  • John T, Gussone N, Podladchikov YY, Bebout GE, Dohmen R, Halama R, Klemd R, Magna T, Seitz HM (2012) Volcanic arcs fed by rapid pulsed fluid flow through subducting slabs. Nature Geosci 5:489–492

    Article  Google Scholar 

  • Johnson OW (1964) One-dimensional diffusion of Li in rutile. Phys Rev 136:A284–A290

    Article  Google Scholar 

  • Johnson PMS (1967) Hydrogen isotope diffusion. Nature 213:689–690

    Article  Google Scholar 

  • Johnson OW, Krouse HR (1966) Isotopic mass dependence of Li diffusion in rutile. J Appl Phys 37:668–670

    Article  Google Scholar 

  • Kaur I, Mishin Y, Gust W (1995) Fundamentals of grain and interphase boundary diffusion. Wiley, 528 pp

    Google Scholar 

  • Kessel R, Ulmer P, Pettke T, Schmidt MW, Thompson AB (2004) A novel approach to determine high-pressure high-temperature fluid and melt compositions using diamond-trap experiments. Am Mineral 89:1078–1086

    Article  Google Scholar 

  • Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120-180 km depth. Nature 437:724–727

    Article  Google Scholar 

  • Kirchner D, Mirwald PW, Schreyer W (1984) Experimenteller Li-Einbau in Mg-Cordierit. Fortschritt Mineral Beih 62:119–120

    Google Scholar 

  • Klemme S, Dalpe C (2003) Trace element partitioning between apatite and carbonatite melt. Am Mineral 88:639–646

    Article  Google Scholar 

  • Klemme S, Blundy JD, Wood BJ (2002) Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim Cosmochim Acta 66:3109–3123

    Article  Google Scholar 

  • Kohlstedt DL, Mackwell SJ (1998) Diffusion of hydrogen and intrinsic point defects in olivine. Z Phys Chem 207:147–162

    Article  Google Scholar 

  • Kowalski PM, Jahn S (2011) Prediction of equilibrium Li isotope fractionation between minerals and aqueous solutions at high P and T: an efficient ab initio approach. Geochim Cosmochim Acta 75:6112–6123

    Article  Google Scholar 

  • Kuzyura AV, Wall F, Jeffries T, Litvin YuA (2010) Partitioning of trace elements between garnet, clinopyroxene and diamond-forming carbonate-silicate melt at 7 GPa. Mineral Mag 74:227–239

    Article  Google Scholar 

  • Lai Y-J, Pogge von Strandmann PAE, Dohmen R, Takazawa E, Elliott T (2015) The influence of melt infiltration on the Li and Mg isotopic composition of the Horoman Peridotite Massif. Geochim Cosmochim Acta 164:318–332

    Google Scholar 

  • Lasaga AC (1979) Multicomponent exchange and diffusion in silicates. Geochim Cosmochim Acta 43:455–469

    Article  Google Scholar 

  • Latourrette T, Hervig RL, Holloway JR (1995) Trace-element partitioning between amphibole, phlogopite, and basanite melt. Earth Planet Sci Lett 135:13–30

    Article  Google Scholar 

  • Lesher CE (2010) Self-diffusion in silicate melts: theory, observations and applications to magmatic systems. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Rev Mineral Geochem 72:269–309

    Google Scholar 

  • Liebske C, Corgne A, Frost DJ, Rubie DC, Wood BJ (2005) Compositional effects on element partitioning between Mg-perovskite and silicate melts. Contrib Mineral Petrol 149:113–128

    Article  Google Scholar 

  • Lowry RK, Reed SJB, Nolan J, Henderson P, Long JVP (1981) Lithium tracer-diffusion in an alkali-basaltic melt—an Ion-microprobe determination. Earth Planet Sci Lett 53:36–40

    Article  Google Scholar 

  • Lundstrom CC (2003) An experimental investigation of the diffusive infiltration of alkalis into partially molten peridotite: Implications for mantle melting processes. Geochem Geophys Geosys 4. doi:10.1029/2001GC000224

    Google Scholar 

  • Lundstrom CC, Shaw HF, Ryerson FJ, Williams Q, Gill J (1998) Crystal chemical control of clinopyroxene-melt partitioning in the Di-Ab-An system: implications for elemental fractionations in the depleted mantle. Geochim Cosmochim Acta 62:2849–2862

    Google Scholar 

  • Lundstrom CC, Sutton AL, Chaussidon M, McDonough WF, Ash R (2006) Trace element partitioning between type B CAI melts and melilite and spinel: implications for trace element distribution during CAI formation. Geochim Cosmochim Acta 70:3421–3435

    Article  Google Scholar 

  • Lynton SJ, Walker RJ, Candela PA (2005) Lithium isotopes in the system Qz-Ms-fluid: an experimental study. Geochim Cosmochim Acta 69:3337–3347

    Article  Google Scholar 

  • Magenheim AJ, Spivack AJ, Alt JC, Bayhurst G, Chan L-H, Zuleger E, Gieskes JM (1995) Borehole fluid chemistry in Hole 504B, Leg 137: formation water or in-situ reaction? ProcODP Sci Res 137/140:141–152

    Google Scholar 

  • Manning JR (1968) Diffusion kinetics for atoms in crystals. Princeton (NJ), D. Van Nostrand, 257 pp

    Google Scholar 

  • Marriott CS, Henderson GM, Belshaw NS, Tudhope AW (2004a) Temperature dependence of delta Li-7, delta Ca-44 and Li/Ca during growth of calcium carbonate. Earth Planet Sci Lett 222:615–624

    Article  Google Scholar 

  • Marriott CS, Henderson GM, Crompton R, Staubwasser M, Shaw S (2004b) Effect of mineralogy, salinity, and temperature on Li/Ca and Li isotope composition of calcium carbonate. Chem Geol 212:5–15

    Article  Google Scholar 

  • Martin LA, Wood BJ, Turner S, Rushmer T (2011) Experimental measurements of trace element partitioning between lawsonite, zoisite and fluid and their implication for the composition of arc magmas. J Petrol 52:1049–1075

    Article  Google Scholar 

  • McDade P, Blundy JD, Wood BJ (2003) Trace element partitioning on the Tinaquillo Lherzolite solidus at 1.5 GPa. Phys Earth Planet Inter 139:129–147

    Article  Google Scholar 

  • Miller SA, Asimow PD, Burnett DS (2006) Determination of melt influence on divalent element partitioning between anorthite and CMAS melts. Geochim Cosmochim Acta 70:4258–4274

    Google Scholar 

  • Millot R, Scaillet B, Sanjuan B (2010) Lithium isotopes in island arc geothermal systems: Guadeloupe, Martinique (French West Indies) and experimental approach. Geochim Cosmochim Acta 74:1852–1871

    Article  Google Scholar 

  • Mortlock AJ (1960) The effect of segregation on the solute diffusion enhancement due to the presence of dislocations. Acta Metall 8:132–134

    Article  Google Scholar 

  • Mungall JE (2002) Empirical models relating viscosity and tracer diffusion in magmatic silicate melts. Geochim Cosmochim Acta 66:125–143

    Article  Google Scholar 

  • Nakamura A, Schmalzried H (1983) On the nonstoichiometry and point defects of olivine. Phys Chem Minerals 10:27–37

    Article  Google Scholar 

  • Nye JF (1957) Physical properties of crystals. Clarendon Press, Oxford, 329 pp

    Google Scholar 

  • Oberti R, Cámara F, Ottolini L, Caballero JM (2003) Lithium in amphiboles: detection, quantification, and incorporation mechanisms in the compositional space bridging sodic and BLi-amphiboles. Eur J Mineral 15:309–319

    Article  Google Scholar 

  • Oeser M, Dohmen R, Horn I, Schuth S, Weyer S (2015) Processes and time scales of magmatic evolution as revealed by Fe-Mg chemical and isotopic zoning in natural olivines. Geochim Cosmochim Acta 154:130–150

    Google Scholar 

  • Onuma N, Higuchi H, Wakita H, Nagasawa H (1968) Trace element partition between two pyroxenes and the host lava. Earth Planet Sci Lett 5:47–51

    Article  Google Scholar 

  • Ottolini L, Laporte D, Raffone N, Devidal JL, Le Fevre B (2009) New experimental determination of Li and B partition coefficients during upper mantle partial melting. Contrib Mineral Petrol 157:313–325

    Article  Google Scholar 

  • Parkinson IJ, Hammond SJ, James RH, Rogers NW (2007) High-temperature lithium isotope fractionation: insights from lithium isotope diffusion in magmatic systems. Earth Planet Sci Lett 257:609–621

    Article  Google Scholar 

  • Pell EM (1960) Diffusion of Li in Si at high T and the isotope effect. Phys Rev 119:1014–1021

    Article  Google Scholar 

  • Petry C, Chakraborty S, Palme H (2004) Experimental determination of Ni diffusion coefficients in olivine and their dependence on temperature, composition, oxygen fugacity, and crystallographic orientation. Geochim Cosmochim Acta 68:4179–4188

    Article  Google Scholar 

  • Philibert J (1991) Atom movements: diffusion and mass transport in solids. Les editions de physique, 602 pp

    Google Scholar 

  • Pistiner JS, Henderson GM (2003) Lithium-isotope fractionation during continental weathering processes. Earth Planet Sci Lett 214:327–339

    Article  Google Scholar 

  • Putnis A, John T (2010) Replacement processes in the earth’s crust. Elements 6:159–164

    Google Scholar 

  • Richter FM, Liang Y, Davis AM (1999) Isotope fractionation by diffusion in molten oxides. Geochim Cosmochim Acta 63:2853–2861

    Article  Google Scholar 

  • Richter FM, Davis AM, DePaolo DJ, Watson EB (2003) Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta 67:3905–3923

    Article  Google Scholar 

  • Richter FM, Mendybaev RA, Christensen JN, Hutcheon ID, Williams RW, Sturchio NC, Beloso AD Jr (2006) Kinetic isotope fractionation during diffusion of ionic species in water. Geochim Cosmochim Acta 70:277–289

    Article  Google Scholar 

  • Richter FM, Watson EB, Mendybaev RA, Teng F-Z, Janney PE (2008) Magnesium isotope fractionation in silicate melts by chemical and thermal diffusion. Geochim Cosmochim Acta 72:206–220

    Article  Google Scholar 

  • Richter FM, Watson EB, Mendybaev R, Dauphas N, Georg B, Watkins J, Valley J (2009) Isotopic fractionation of the major elements of molten basalt by chemical and thermal diffusion. Geochim Cosmochim Acta 73:4250–4263

    Article  Google Scholar 

  • Richter F, Watson B, Chaussidon M, Mendybaev R, Ruscitto D (2014) Lithium isotope fractionation by diffusion in minerals. Part 1: Pyroxenes. Geochim Cosmochim Acta 126:352–370

    Article  Google Scholar 

  • Roselieb K, Chaussidon M, Mangin D, Jambon A (1998) Lithium diffusion in vitreous jadeite (NaAISi206): an ion microprobe investigation. N Jb Miner Abh 172:245–257

    Google Scholar 

  • Rubie DC, Thompson AB (1985) Kinetics of metamorphic reactions at elevated temperatures and pressures: an appraisal of available experimental data. In: Thompson AB, Rubie DC (eds) Metamorphic reactions. Kinetics, textures, and deformation. Adv Phys Geochem 4:27–79

    Google Scholar 

  • Ruiz-Agudo E, Putnis CV, Putnis A (2014) Coupled dissolution and precipitation at mineral–fluid interfaces. Chem Geol 383:132–146

    Article  Google Scholar 

  • Sartbaeva A, Wells SA, Redfern SAT, Hinton RW, Reed SJB (2005) Ionic diffusion in quartz studied by transport measurements, SIMS and atomistic simulations. J Phys Condens Matter 17:1099–1112

    Google Scholar 

  • Sasaki J, Peterson NL, Hoshino K (1985) Tracer impurity diffusion in single-crystal rutile (TiO2−x). J Phys Chem Solids 46:1267–1283

    Article  Google Scholar 

  • Schmidt MW, Connolly JAD, Günther D, Bogaerts M (2006) Element partitioning: the role of melt structure and composition. Science 312:1646–1650

    Google Scholar 

  • Schmidt MW, Ulmer P (2004) A rocking multi-anvil: elimination of chemical segregation in fluid-saturated high-pressure experiments. Geochim Cosmochim Acta 68:1889–1899

    Article  Google Scholar 

  • Schmidt K, Bottazzi P, Vannucci R, Mengel K (1999) Trace element partitioning between phlogopite, clinopyroxene, and leucite lamproite melt. Earth Planet Sci Lett 168:287–299

    Article  Google Scholar 

  • Schoen AH (1958) Correlation and the isotope effect for diffusion in crystalline solids. Phys Rev Lett 1:138–140

    Article  Google Scholar 

  • Seitz H-M, Woodland AB (2000) The distribution of lithium in peridotitic and pyroxenitic mantle lithologies—an indicator of magmatic and metasomatic processes. Chem Geol 166:47–64

    Google Scholar 

  • Seyfried WE Jr (1987) Experimental and theoretical constraints on hydrothermal alteration processes at mid-ocean ridges. Ann Rev Earth Planet Sci 15:317–335

    Article  Google Scholar 

  • Seyfried WE Jr, Bischoff JL (1979) Low temperature basalt alteration by sea water: an experimental study at 70 °C and 150 °C. Geochim Cosmochim Acta 43:1937–1947

    Article  Google Scholar 

  • Seyfried WE Jr, Mottl MJ (1982) Hydrothermal alteration of basalt by seawater under seawater dominated conditions. Geochim Cosmochim Acta 46:985–1002

    Article  Google Scholar 

  • Seyfried Jr WE, Gordon PC, Dickson FW (1979) A new reaction cell for hydrothermal solution equipment. Am Mineral 44:646–649

    Google Scholar 

  • Seyfried WE, Janecky DR Jr, Mottl MJ (1984) Alteration of the oceanic crust: implications for the geochemical cycles of lithium and boron. Geochim Cosmochim Acta 48:557–569

    Article  Google Scholar 

  • Seyfried WE Jr, Janecky DR, Berndt ME (1987) Rocking autoclaves for hydrothermal experiments II. The flexible reaction cell system. In: Barnes HL, Ulmer GC (eds) Hydrothermal experimental techniques. Wiley Interscience, pp 216–240

    Google Scholar 

  • Seyfried WEJ, Ding K, Berndt ME (1991) Phase equilibria constraints on the chemistry of hot spring fluids at mid-ocean ridges. Geochim Cosmochim Acta 55:3559–3580

    Article  Google Scholar 

  • Seyfried WE, Chen X, Chan LH (1998) Trace element mobility and Lithium isotope exchange during hydrothermal alteration of seafloor weathered basalt: an experimental study at 350 °C, 500 bars. Geochim Cosmochim Acta 62:949–960

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii in oxides and fluorides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  • Spandler C, O’Neill HS (2010) Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1,300 °C with some geochemical implications. Contrib Mineral Petrol 159:791–818

    Article  Google Scholar 

  • Taura H, Yurimoto H, Kurita K, Sueno S (1998) Pressure dependence on partition coefficients for trace elements between olivine and the coexisting melts. Phys Chem Miner 25:469–484

    Article  Google Scholar 

  • Taura H, Yurimoto H, Kato T, and Sueno S (2001) Trace element partitioning between silicate perovskites and ultracalcic melt. Phys Earth Planet Inter 124, 25–32

    Google Scholar 

  • Teng FZ, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappell BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178

    Article  Google Scholar 

  • Teng FZ, McDonough WF, Rudnick RL, Walker RJ (2006) Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth Planet Sci Lett 243:701–710

    Article  Google Scholar 

  • Tepley FJ III, Lundstrom CC, McDonough WF, Thompson A (2010) Trace element partitioning between high-An plagioclase and basaltic to basaltic andesite melt at 1 atmosphere pressure. Lithos 118:82–94

    Article  Google Scholar 

  • Thornton EC, Seyfried WE Jr (1987) Reactivity of organic-rich sediment in seawater at 350 °C, 500 bars: experimental and theoretical constraints for the Guaymas Basin hydrothermal system. Geochim Cosmochim Acta 51:1997–2010

    Article  Google Scholar 

  • Urey HC (1947) The thermodynamics of isotopic substances. J Chem Soc (London) 562–581

    Google Scholar 

  • van Kan Parker M, Liebscher A, Frei D, van Sijl J, van Westrenen W, Blundy J, Franz G (2010) Experimental and computational study of trace element distribution between orthopyroxene and anhydrous silicate melt: substitution mechanisms and the effect of iron. Contrib Mineral Petrol 159:459–473

    Article  Google Scholar 

  • van Kan Parker M, Mason PRD, van Westrenen W (2011) Experimental study of trace element partitioning between lunar orthopyroxene and anhydrous silicate melt: effects of lithium and iron. Chem Geol 285:1–14

    Article  Google Scholar 

  • Van Orman JA, Crispin KL (2010) Diffusion in oxides. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Rev Mineral Geochem 72:691–733

    Google Scholar 

  • van Westrenen W, Blundy J, Wood B (1999) Crystal chemical controls on trace element partitioning between garnet and anhydrous silicate melt. Am Mineral 84:838–847

    Article  Google Scholar 

  • van Westrenen W, Blundy J, Wood B (2000) Effect of Fe2+ on garnet-melt trace element partitioning: experiments in FCMAS and quantification of crystal-chemical controls in natural systems. Lithos 53:189–201

    Article  Google Scholar 

  • Veksler IV, Petibon C, Jenner GA, Dorfman AM, Dingwell DB (1998) Trace element partitioning in immiscible silicate-carbonate liquid systems: an initial experimental study using a centrifuge autoclave. J Petrol 39:2095–2104

    Article  Google Scholar 

  • Verhoogen J (1952) Ionic diffusion and electrical conductivity in quartz. Am Mineral 37:637–655

    Google Scholar 

  • Verney-Carron A, Vigier N, Millot R (2011) Experimental determination of the role of diffusion on Li isotope fractionation during basaltic glass weathering. Geochim Cosmochim Acta 75:3452–3468

    Article  Google Scholar 

  • Vigier N, Decarreau A, Millot R, Carignan J, Petit S, France-Lanord C (2008) Quantifying Li isotope fractionation during smectite formation and implications for the Li cycle. Geochim Cosmochim Acta 72:780–792

    Article  Google Scholar 

  • Von Damm KL (1991) A comparison of Guaymas Basin hydrothermal solutions with other sedimented systems and experimental results. In: Dauphin JP, Simoneit BRT (eds) The Garland Pesuar Provinces of the Californas. Am Assoc Petrol Geol Memoir 47:743–751

    Google Scholar 

  • Wasserburg GJ (1988) Diffusion of water in silicate melts. J Geol 96:363–367

    Article  Google Scholar 

  • Watkins JM, Liang Y, Richter F, Ryerson FJ, DePaolo DJ (2014) Diffusion of multi-isotopic chemical species in molten silicates. Geochim Cosmochim Acta 139:313–326

    Article  Google Scholar 

  • Watson EB, Baxter EF (2007) Diffusion in solid-Earth systems. Earth Planet Sci Lett 253:307–327

    Article  Google Scholar 

  • Watson EB, Dohmen R (2010) Non-traditional and emerging methods for characterizing diffusion in minerals and mineral aggregates. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Rev Mineral Geochem 72:61–105

    Google Scholar 

  • Welsch A-M, Behrens H, Horn I, Roß S, Heitjans P (2012) Self-diffusion of lithium in LiAlSi2O6 glasses studied using mass spectrometry. J Phys Chem A 116:309–318

    Article  Google Scholar 

  • Wenger M, Armbruster T (1991) Crystal chemistry of lithium: oxygen coordination and bonding. Eur J Mineral 3:387–399

    Article  Google Scholar 

  • Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Williams LB, Hervig RL (2005) Lithium and boron isotopes in illite-smectite: the importance of crystal size. Geochim Cosmochim Acta 69:5705–5716

    Article  Google Scholar 

  • Wimpenny J, Gislason SR, James RH, Gannoun A, Pogge von Strandmann PAE, Burton K (2010) The behaviour of Li and Mg isotopes during primary phase dissolution and secondary mineral formation in basalt. Geochim Cosmochim Acta 74:5259–5279

    Article  Google Scholar 

  • Wood BJ, Blundy JD (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Mineral Petrol 129:166–181

    Article  Google Scholar 

  • Wood BJ, Blundy JD (2001) The effect of cation charge on crystal-melt partitioning of trace elements. Earth Planet Sci Lett 188:59–71

    Article  Google Scholar 

  • Wood B, Trigila R (2001) Experimental determination of aluminous clinopyroxene-melt partition coefficients for potassic liquids, with application to the evolution of the Roman province potassic magmas. Chem Geol 172:213–223

    Article  Google Scholar 

  • Wunder B, Meixner A, Romer RL, Heinrich W (2006) Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contrib Mineral Petrol 151:112–120

    Article  Google Scholar 

  • Wunder B, Meixner A, Romer RL, Feenstra A, Schettler G, Heinrich W (2007) Lithium isotope fractionation between Li- bearing staurolite, Li-mica and aqueous fluids: an experimental study. Chem Geol 238:277–290

    Article  Google Scholar 

  • Wunder B, Deschamps F, Watenphul A, Guillot S, Meixner A, Romer RL, Wirth R (2010) The effect of chrysotile nano-tubes on the serpentine-fluid Li-isotopic fractionation. Contrib Mineral Petrol 159:781–790

    Article  Google Scholar 

  • Wunder B, Romer RL, Meixner A, Jahn S (2011) Li-isotope silicate fluid fractionation: pressure dependence and influence of the bonding environment. Eur J Mineral 23:333–342

    Article  Google Scholar 

  • Yakob JL, Feineman MD, Deane JA Jr, Eggler DH, Penniston-Dorland SC (2012) Lithium partitioning between olivine and diopside at upper mantle conditions: an experimental study. Earth Planet Sci Lett 329–330:11–21

    Article  Google Scholar 

  • You C-F, Gieskes JM (2001) Hydrothermal alteration of hemi-pelagic sediments: experimental evaluation of geochemical processes in shallow subduction zones. Appl Geochem 16:1055–1066

    Article  Google Scholar 

  • You CF, Castillo PR, Gieskes JM, Chan LH (1996) Trace element behaviour in hydrothermal experiments: implications for fluid processes at shallow depths in subduction zones. Earth Planet Sci Lett 140:41–52

    Article  Google Scholar 

  • Yurimoto H, Ohtani E (1992) Element partitioning between majorite and liquid: a secondary ion mass spectrometric study. Geophys Res Lett 19. doi:10.1029/91GL02824

    Google Scholar 

  • Zanetti A, Tiepolo M, Obertia R, Vannuccia R (2004) Trace-element partitioning in olivine: modelling of a complete data set from a synthetic hydrous basanite melt. Lithos 75:39–54

    Article  Google Scholar 

  • Zhang Y, Cherniak DJ (eds) (2010) Diffusion in minerals and melts. Rev Mineral Geochem 72, 1038 pp

    Google Scholar 

  • Zhang Y, Ni H (2010) Diffusion of H, C, and O components in silicate melts. In: Zhang Y, Cherniak DJ (eds) Diffusion in minerals and melts. Rev Mineral Geochem 72:171–225

    Google Scholar 

  • Zhang F, Wright K (2012) Lithium defects and diffusivity in forsterite. Geochim Cosmochim Acta 91:32–39

    Article  Google Scholar 

  • Zhang YX, Stolper EM, Wasserburg GJ (1991) Diffusion of water in rhyolitic glasses. Geochim Cosmochim Acta 55:441–445

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul B. Tomascak .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tomascak, P.B., Magna, T., Dohmen, R. (2016). Li Partitioning, Diffusion and Associated Isotopic Fractionation: Theoretical and Experimental Insights. In: Advances in Lithium Isotope Geochemistry. Advances in Isotope Geochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-01430-2_4

Download citation

Publish with us

Policies and ethics