Skip to main content

Transient Simulation of k⋅p-Schrödinger Systems Using Discrete Transparent Boundary Conditions

  • Chapter
  • First Online:
  • 1413 Accesses

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 94))

Abstract

This chapter deals with the derivation and analysis of discrete transparent boundary conditions (TBCs) for transient systems of Schrödinger-type equations in one space dimension. These systems occur i.e. in the physics of layered semiconductor devices as the so called kp-Schrödinger equations, which are a well established tool for band structure calculations.The new TBCs are constructed directly for the chosen finite difference scheme, in order to ensure the stability of the underlying scheme and to completely avoid any numerical reflections. The discrete TBCs are constructed using the solution of the exterior problem with Laplace and \(\mathcal{Z}\)-transformation, respectively.These discrete TBCs can easily be obtained by an inverse \(\mathcal{Z}\)-transformation based on FFT, but these exact discrete TBCs are non-local in time and thus very costly. Hence, as a remedy, we present approximate discrete TBCs, that allow a fast calculation of the boundary terms using a sum-of-exponentials approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Antoine, A. Arnold, C. Besse, M. Ehrhardt, A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations. Commun. Comput. Phys. 4, 729–796 (2008)

    MathSciNet  Google Scholar 

  2. A. Arnold, Numerically absorbing boundary conditions for quantum evolution equations. VLSI Design 6, 313–319 (1998)

    Article  Google Scholar 

  3. A. Arnold, M. Ehrhardt, I. Sofronov, Discrete transparent boundary conditions for the Schrödinger equation: fast calculation, approximation, and stability. Commun. Math. Sci. 1, 501–556 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Hasted Press, 1988)

    Google Scholar 

  5. U. Bandelow, H.-C. Kaiser, Th. Koprucki, J. Rehberg, Spectral properties of kp Schrödinger operators in one space dimension. Numer. Funct. Anal. Optim. 21, 379–409 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. A.C.E. Bittencourt, A.M. Cohen, G.E. Marques, Strain-induced enhancement of resonant current of holes in multilayered heterostructures. Phys. Rev. B 57, 4525–4543 (1998)

    Article  Google Scholar 

  7. G. Blakiewicz, W. Janke, Recursive convolution algorithms for time–domain simulation of electronic circuits. Comp. Meth. Sci. Techn. 7, 91–109 (2001)

    Google Scholar 

  8. A. Bultheel, M. van Barel, Linear algebra, rational approximation and orthogonal polynomials (Studies in Computational Mathematics 6, North–Holland, 1997)

    Google Scholar 

  9. M.G. Burt, The justification for applying the effective-mass approximation to microstructures. J. Phys. Condens. Matter 4, 6651–6690 (1992)

    Article  Google Scholar 

  10. M.G. Burt, Direct derivation of effective-mass equations for microstructures with atomically abrupt boundaries. J. Phys. Condens. Matter 11, R53–R83 (1998)

    Article  Google Scholar 

  11. M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1996)

    MATH  Google Scholar 

  12. C.Y.-P. Chao, S.L. Chuang, Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells. Phys. Rev. B 46, 4110–4122 (1992)

    Article  Google Scholar 

  13. S.L. Chuang, Efficient band-structure calculations of strained quantum wells. Phys. Rev. B 43, 9649–9661 (1991)

    Article  Google Scholar 

  14. S.L. Chuang, Physics of Optoelectronic Devices (Wiley & Sons, New York, 1995)

    Google Scholar 

  15. P. Debernardi, P. Fasano, Quantum confined Stark effect in semiconductor quantum wells including valence band mixing and Coulomb effects. IEEE J. Quant. Electron. 29, 2741–2755 (1993)

    Article  Google Scholar 

  16. M. Ehrhardt, A. Arnold, Discrete transparent boundary conditions for the Schrödinger equation. Riv. Matem. Univ. di Parma 6, 57–108 (2001)

    MathSciNet  Google Scholar 

  17. M. Ehrhardt, A. Zisowsky, Fast Calculation of Energy and Mass preserving solutions of Schrödinger–Poisson systems on unbounded domains. J. Comput. Appl. Math. 187, 1–28 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Ehrhardt, Discrete transparent boundary conditions for Schrödinger-type equations for non-compactly supported initial data. Appl. Numer. Math. 58, 660–673 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. E.O. Kane, Energy Band Theory. in Paul, W. (ed.): Handbook on Semiconductors (North-Holland, Amsterdam, New York, Oxford, 1982)

    Google Scholar 

  20. J.M. Luttinger, W. Kohn, Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 94, 869–883 (1955)

    Article  Google Scholar 

  21. A.T. Meney, B. Gonul, E.P. O’Reilly, Evaluation of various approximations used in the envelope-function method. Phys. Rev. B 50, 10893–10904 (1994)

    Article  Google Scholar 

  22. V. Sankaran, J. Singh, Formalism for tunneling of mixed-symmetry electronic states: application to electron and hole tunneling in direct- and indirect-band-gap GaAs/Al x Ga1−x As structures. Phys. Rev. B 44, 3175–3186 (1991)

    Article  Google Scholar 

  23. J. Singh, Physics of semiconductors and their heterostructures (McGraw-Hill, New York, 1993)

    Google Scholar 

  24. C. Sirtori, P. Kruck, S. Barbieri, Ph. Collot, J. Nagle, M. Beck, J. Faist, U. Oesterle, GaAs/Al x Ga1−x As quantum cascade lasers. Appl. Phys. Lett. 73, 3486–3488 (1998)

    Article  Google Scholar 

  25. J.A. Stovneng, E.H. Hauge, Time-dependent resonant tunneling of wave packets in the tight-binding model. Phys. Rev. B 44, 13582–13594 (1991)

    Article  Google Scholar 

  26. M. Sweeny, J. Xu, Resonant interband tunnel diodes. Appl. Phys. Lett. 54, 546–548 (1989)

    Article  Google Scholar 

  27. M. Wagner, H. Mizuta, Complex-energy analysis of intrinsic lifetimes of resonances in biased multiple quantum wells. Phys. Rev. B 48, 14393–14406 (1993)

    Article  Google Scholar 

  28. J. Zhang, B. Gu, Temporal characteristics of electron tunneling in double-barrier stepped quantum-well structures. Phys. Rev. B 43, 5028–5034 (1991)

    Article  Google Scholar 

  29. A. Zisowsky, Discrete transparent boundary conditions for systems of evolution equations, Ph.D. dissertation, Technische Universität Berlin (2003)

    MATH  Google Scholar 

  30. A. Zisowsky, A. Arnold, M. Ehrhardt, Th. Koprucki, Discrete transparent boundary conditions for transient kp-Schrödinger equations with application to quantum heterostructures. Z. Angew. Math. Mech. 85, 793–805 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. A. Zisowsky, M. Ehrhardt, Discrete artificial boundary conditions for nonlinear Schrödinger equations. Math. Comput. Modell. 47, 1264–1283 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  32. A. Zlotnik, I. Zlotnik, Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. to appear in: Kinetic and Related Models (2013)

    Google Scholar 

  33. A. Zlotnik, I. Zlotnik, Finite element method with discrete transparent boundary conditions for the one-dimensional non-stationary Schrödinger equation. Doklady Mathematics 86, 750–755 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Zisowsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zisowsky, A., Arnold, A., Ehrhardt, M., Koprucki, T. (2014). Transient Simulation of k⋅p-Schrödinger Systems Using Discrete Transparent Boundary Conditions. In: Ehrhardt, M., Koprucki, T. (eds) Multi-Band Effective Mass Approximations. Lecture Notes in Computational Science and Engineering, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-01427-2_7

Download citation

Publish with us

Policies and ethics