Skip to main content

The Multi-Band k⋅p Hamiltonian for Heterostructures: Parameters and Applications

  • Chapter
  • First Online:
Book cover Multi-Band Effective Mass Approximations

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 94))

  • 1638 Accesses

Abstract

In this contribution all the various definitions of the kp parameters available in the literature are summarized, and equations that relate them to each other are provided. We believe that such a summary for both zinc blende and wurtzite crystals on a few pages is very useful, not only for beginners but also for experienced researchers that quickly want to look up conversion formulas. Results of kp calculations for bulk semiconductors are shown for diamond, and for unstrained and strained InAs. Several examples of kp calculations for heterostructures are presented. They cover spurious solutions, a spherical quantum dot and heterostructures showing the untypical type-II and type-III band alignments. Finally, self-consistent kp calculations of a two-dimensional hole gas in diamond for different substrate orientations are analyzed. Wherever possible, the kp results are compared to tight-binding calculations. All these calculations have been performed using the nextnano software (nextnano: The nextnano software can be obtained from http://www.nextnano.com; Birner et al., IEEE Trans. Electron Dev. 54:2137–2142, 2007). Therefore, this contribution provides some specific details that are relevant for a numerical implementation of the kp method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Andlauer, Discretization of multiband-kp-Schrödinger equations for multidimensional semiconductor nanostructures, Master thesis, Walter Schottky Institut and Physics Department, Technische Universität München (2004)

    Google Scholar 

  2. T. Andlauer, Optoelectronic and spin-related properties of semiconductor nanostructures in magnetic fields. Selected Topics of Semiconductor Physics and Technology 105, Verein zur Förderung des Walter Schottky Instituts der Technischen Universität München e.V., München (2009)

    Google Scholar 

  3. T. Andlauer, P. Vogl, Full-band envelope-function approach for type-II broken-gap superlattices. Phys. Rev. B 80, 035304 (2009)

    Article  Google Scholar 

  4. A.D. Andreev, E.P. O’Reilly, Theory of the electronic structure of GaN/AlN hexagonal quantum dots. Phys. Rev. B 62, 15851–15870 (2000)

    Article  Google Scholar 

  5. T.P. Bahder, Eight-band kp model of strained zinc-blende crystals. Phys. Rev. B 41, 11992–12001 (1990)

    Article  Google Scholar 

  6. B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Quantum Spin Hall Effect and Topological Phase Transitions in HgTe Quantum Wells. Science 314, 1757–1761 (2006)

    Article  Google Scholar 

  7. G.L. Bir, G.E. Pikus, Symmetry and strain-induced effects in semiconductors (John Wiley & Sons, New York, 1974)

    Google Scholar 

  8. S. Birner, T. Zibold, T. Andlauer, T. Kubis, M. Sabathil, A. Trellakis, P. Vogl, nextnano: General Purpose 3-D Simulations. IEEE Trans. Electron Devices 54, 2137–2142 (2007)

    Google Scholar 

  9. S. Boyer-Richard, F. Raouafi, A. Bondi, L. Pédesseau, C. Katan, J.-M. Jancu, J. Even, 30-band kp method for quantum semiconductor heterostructures. Appl. Phys. Lett. 98, 251913 (2011)

    Article  Google Scholar 

  10. C. Brüne, A. Roth, E.G. Novik, M. König, H. Buhmann, E.M. Hankiewicz, W. Hanke, J. Sinova, L.W. Molenkamp, Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures. Nature Physics 6, 448–454 (2010)

    Article  Google Scholar 

  11. V.A. Burdov, Electron and Hole Spectra of Silicon Quantum Dots. J. Exp. Theor. Phys. 94, 411–418 (2002)

    Article  Google Scholar 

  12. M.G. Burt, The justification for applying the effective-mass approximation to microstructures. J. Phys.: Condens. Matter 4, 6651–6690 (1992)

    Google Scholar 

  13. M.G. Burt, Fundamentals of envelope function theory for electronic states and photonic modes in nanostructures. J. Phys.: Condens. Matter 11, R53–R83 (1999)

    Google Scholar 

  14. M. Cardona, F.H. Pollak, Energy-Band Structure of Germanium and Silicon: The kp Method. Phys. Rev. 142, 530–543 (1966)

    Article  Google Scholar 

  15. X. Cartoixà, Theoretical Methods for Spintronics in Semiconductors with Applications, Ph.D. dissertation, California Institute of Technology, Pasadena, California (2003)

    Google Scholar 

  16. C.Y.-P. Chao, S.L. Chuang, Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells. Phys. Rev. B 46, 4110–4122 (1992)

    Article  Google Scholar 

  17. S.L. Chuang, C.S. Chang, kp method for strained wurtzite semiconductors. Phys. Rev. B 54, 2491–2504 (1996)

    Google Scholar 

  18. M. Dankerl, A. Lippert, S. Birner, E.U. Stützel, M. Stutzmann, J.A. Garrido, Hydrophobic interaction and charge accumulation at the diamond/electrolyte interface. Phys. Rev. Lett. 106, 196103 (2011)

    Article  Google Scholar 

  19. G. Dresselhaus, A.F. Kip, C. Kittel, Cyclotron Resonance of Electrons and Holes in Silicon and Germanium Crystals. Phys. Rev. 98, 368–384 (1955)

    Article  Google Scholar 

  20. E.T. Edmonds, C.I. Pakes, L. Ley, Self-consistent solution of the Schrödinger–Poisson equations for hydrogen-terminated diamond. Phys. Rev. B 81, 085314 (2010)

    Article  Google Scholar 

  21. H. Ehrenreich, A.W. Overhauser, Scattering of Holes by Phonons in Germanium. Phys. Rev. 104, 331–342 (1956)

    Article  MATH  Google Scholar 

  22. T. Eissfeller, private communication (2011)

    Google Scholar 

  23. T. Eissfeller, P. Vogl, Real-space multiband envelope-function approach without spurious solutions. Phys. Rev. B 84, 195122 (2011)

    Article  Google Scholar 

  24. R. Eppenga, M.F.H. Schuurmans, S. Colak, New kp theory for GaAs/Ga1−x Al x As-type quantum wells. Phys. Rev. B 36, 1554–1564 (1987)

    Article  Google Scholar 

  25. V.A. Fonoberov, A.A. Balandin, Excitonic properties of strained wurtzite and zinc-blende GaN/Al x Ga1−x N quantum dots. J. Appl. Phys. 94, 7178–7186 (2003)

    Article  Google Scholar 

  26. B.A. Foreman, Effective-mass Hamiltonian and boundary conditions for the valence bands of semiconductor microstructures. Phys. Rev. B 48, 4964–4967 (1993)

    Article  Google Scholar 

  27. B.A. Foreman, Elimination of spurious solutions from eight-band kp theory. Phys. Rev. B 56, R12748–R12751 (1997)

    Article  Google Scholar 

  28. E. Gheeraert, S. Koizumi, T. Teraji, H. Kanda, Electronic States of Boron and Phosphorus in Diamond. Phys. Status Solidi A 174, 39–51 (1999)

    Article  Google Scholar 

  29. C.H. Grein, P.M. Young, M.E. Flatté, H. Ehrenreich, Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes. J. Appl. Phys. 78, 7143–7152 (1995)

    Article  Google Scholar 

  30. S. Hackenbuchner, Elektronische Struktur von Halbleiter-Nanobauelementen im thermodynamischen Nichtgleichgewicht. Selected Topics of Semiconductor Physics and Technology 48, Verein zur Förderung des Walter Schottky Instituts der Technischen Universität München e.V., München (2002)

    Google Scholar 

  31. J.C. Hensel, G. Feher, Cyclotron Resonance Experiments in Uniaxially Stressed Silicon: Valence Band Inverse Mass Parameters and Deformation Potentials. Phys. Rev. 129, 1041–1062 (1963)

    Article  MATH  Google Scholar 

  32. J.M. Hinckley, J. Singh, Hole transport theory in pseudomorphic Si1−x Ge x alloys grown on Si(001) substrates. Phys. Rev. B 41, 2912–2926 (1990)

    Article  Google Scholar 

  33. J.-M. Jancu, R. Scholz, F. Beltram, F. Bassani, Empirical spds tight-binding calculation for cubic semiconductors: General method and material parameters. Phys. Rev. B 57, 6493–6507 (1998)

    Article  Google Scholar 

  34. P. Lawaetz, Valence-Band Parameters in Cubic Semiconductors. Phys. Rev. B 4, 3460–3467 (1971)

    Article  Google Scholar 

  35. R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (SIAM Publications, Philadelphia, 1998)

    Book  Google Scholar 

  36. L.C. Lew Yan Voon, M. Willatzen, The k p method – Electronic Properties of Semiconductors (Springer, Berlin, 2009)

    Google Scholar 

  37. J.P. Loehr, Parameter consistency in multienergetic kp models. Phys. Rev. B 52, 2374–2380 (1995)

    Article  Google Scholar 

  38. J. Los, A. Fasolino, A. Catellani, Generalization of the kp approach for strained layered semiconductor structures grown on high-index-planes. Phys. Rev. B 53, 4630–4648 (1996)

    Article  Google Scholar 

  39. S. Luryi, Quantum capacitance devices: General Theory. Appl. Phys. Lett. 52, 501–503 (1988)

    Article  Google Scholar 

  40. J.M. Luttinger, Quantum Theory of Cyclotron Resonance in Semiconductors: General Theory. Phys. Rev. 102, 1030–1039 (1956)

    Article  MATH  Google Scholar 

  41. J.M. Luttinger, W. Kohn, Motion of Electrons and Holes in Perturbed Periodic Fields. Phys. Rev. 97, 869–883 (1955)

    Article  MATH  Google Scholar 

  42. F. Mireles, S.E. Ulloa, Ordered Hamiltonian and matching conditions for heterojunctions with wurtzite symmetry: GaN/Al x Ga1−x N quantum wells. Phys. Rev. B 60, 13659–13667 (1999)

    Article  Google Scholar 

  43. nextnano: The nextnano software can be obtained from http://www.nextnano.com (2011)

  44. E.G. Novik, A. Pfeuffer-Jeschke, T. Jungwirth, V. Latussek, C.R. Becker, G. Landwehr, H. Buhmann, L.W. Molenkamp, Band structure of semimagnetic Hg1−y Mn y Te quantum wells. Phys. Rev. B 72, 035321 (2005)

    Article  Google Scholar 

  45. P. Pfeffer, W. Zawadzki, Five-level kp model for the conduction and valence bands of GaAs and InP. Phys. Rev. B 53, 12813–12828 (1996)

    Article  Google Scholar 

  46. C.R. Pidgeon, R.N. Brown, Interband Magneto-Absorption and Faraday Rotation in InSb. Phys. Rev. 146, 575–583 (1966)

    Article  Google Scholar 

  47. C.J. Rauch, Millimeter Cyclotron Resonance Experiments in Diamond. Phys. Rev. Lett. 7, 83–84 (1961)

    Article  Google Scholar 

  48. C.J. Rauch, Millimetre cyclotron resonance in diamond. Proceedings of the International Conference on Semiconductor Physics, Exeter (The Institute of Physics and the Physical Society, London), 276–280 (1962)

    Google Scholar 

  49. L. Reggiani, D. Waechter, S. Zukotynski, Hall-coefficient factor and inverse valence-band parameters of holes in natural diamond. Phys. Rev. B 128, 3550–3555 (1983)

    Article  Google Scholar 

  50. S. Richard, F. Aniel, G. Fishman, Energy-band structure of Ge, Si, and GaAs: A thirty-band kp method. Phys. Rev. B 70, 235204 (2004)

    Article  Google Scholar 

  51. A. Trellakis, T. Zibold, S. Andlauer, S. Birner, R.K. Smith, R. Morschl, P. Vogl, The 3D nanometer device project nextnano: Concepts, methods, results. J. Comput. Electron. 5, 285–289 (2006)

    Article  Google Scholar 

  52. C.G. Van de Walle, Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871–1883 (1989)

    Article  Google Scholar 

  53. R.G. Veprek, S. Steiger, B. Witzigmann, Ellipticity and the spurious solution problem of kp envelope functions. Phys. Rev. B 76, 165320 (2007)

    Article  Google Scholar 

  54. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001)

    Article  Google Scholar 

  55. M. Willatzen, M. Cardona, N.E. Christensen, Linear muffin-tin-orbital and kp calculations of effective masses and band structure of semiconducting diamond. Phys. Rev. B 50, 18054–18059 (1994)

    Article  Google Scholar 

  56. P.Y. Yu, M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties (Springer, Berlin, 1999)

    Book  Google Scholar 

  57. A. Zakharova, S.T. Yen, K.A. Chao, Hybridization of electron, light-hole, and heavy-hole states in InAs/GaSb quantum wells. Phys. Rev. B 64, 235332 (2001)

    Article  Google Scholar 

  58. T. Zibold, Semiconductor based quantum information devices: Theory and simulations. Selected Topics of Semiconductor Physics and Technology 87, Verein zur Förderung des Walter Schottky Instituts der Technischen Universität München e.V., München (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Birner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Birner, S. (2014). The Multi-Band k⋅p Hamiltonian for Heterostructures: Parameters and Applications. In: Ehrhardt, M., Koprucki, T. (eds) Multi-Band Effective Mass Approximations. Lecture Notes in Computational Science and Engineering, vol 94. Springer, Cham. https://doi.org/10.1007/978-3-319-01427-2_6

Download citation

Publish with us

Policies and ethics