1D Cahn–Hilliard Dynamics: Coarsening and Interrupted Coarsening

  • Simon Villain-GuillotEmail author
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 6)


Many systems exhibit a phase where the order parameter is spatially modulated. These patterns can be the result of a frustration caused by the competition between interaction forces with opposite effects.In all models with local interactions, these ordered phases disappear in the strong segregation regime (low temperature). It is expected, however, that these phases should persist in the case of long-range interactions, which can’t be correctly described by a Ginzburg–Landau type model with only a finite number of spatial derivatives of the order parameter.An alternative approach is to study the dynamics of the phase transition or pattern formation. While, in the usual process of Ostwald ripening, succession of doubling of the domain size leads to a total segregation, or macro-segregation, Misbah and Politi have shown that long-range interactions could cause an interruption of this coalescence process, stabilizing a pattern which then remains in a micro-structured state or super-crystal. We show that this is the case for a modified Cahn–Hilliard dynamics due to Oono which includes a nonlocal term and which is particularly well suited to describe systems with a modulated phase.


Dynamics of phase transition Spinodal decomposition Cahn Hillard equation Ostwald ripening Coarsening (interrupted coarsening) Copolymers Instability Pattern formation Modulated phase Soliton lattice Segregation Interfacial dynamics Ginzburg–Landau free energy 



The authors would like to thank Dr. Chaouqi Misbah (LIPhy, Grenoble) for fruitful discussions and an invitation in Grenoble where part of this work was done.


  1. 1.
    Seul M, Andelman D (1995) Domain shapes and patterns: the phenomenology of modulated phases. Science 267:476CrossRefGoogle Scholar
  2. 2.
    Hadziioannou G (2002) Semiconducting block copolymers for self-assembled photovoltaic devices. MRS Bull 27:456CrossRefGoogle Scholar
  3. 3.
    Politi P, Misbah C (2004) When does coarsening occur in the dynamics of one-dimensional fronts? Phys Rev Lett 92:090601CrossRefGoogle Scholar
  4. 4.
    Oono Y, Puri S (1987) Computationally efficient modeling of ordering of quenched phases. Phys Rev Lett 58:836CrossRefGoogle Scholar
  5. 5.
    Oono Y, Shiwa Y (1987) Computationally efficient modeling of block copolymer and Benard pattern formations. Mod Phys Lett B 1:49CrossRefGoogle Scholar
  6. 6.
    Hohenberg PC, Halperin BI (1977) Theory of dynamical critical phenomena. Rev Mod Phys 49:435. See also Cross MC, Hohenberg PC (1993) Pattern formation out of equilibrium. Rev Mod Phys 65:851Google Scholar
  7. 7.
    Gunton JD, San Miguel M, Sahni PS (1983) In: Domb C, Lebowitz JL (eds) Phase transition et critical phenomena, vol 8. Academic, London, p 267Google Scholar
  8. 8.
    Hillert M (1961) A solid solution model for inhomogeneous systems. Acta Metall 9:525CrossRefGoogle Scholar
  9. 9.
    Cahn JW, Hilliard JE (1958) Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys 28:258 (1958)Google Scholar
  10. 10.
    Cahn JW (1965) Phase separation by spinodal decomposition in isotropic systems. J Chem Phys 42:93CrossRefGoogle Scholar
  11. 11.
    Chevallard C, Clerc M, Coullet P, Gilli JM (2000) Interface dynamics in liquid crystals. Eur Phys J E 1:179CrossRefGoogle Scholar
  12. 12.
    Oyama Y (1939) Mixing of solids. Bull Inst Phys Chem Res Rep 5:600. English translation Weidenbaum SS (1958) Adv Chem Eng 2:211Google Scholar
  13. 13.
    Puri S, Hayakawa H (2001) Segregation of granular mixtures in a rotating drum. Adv Complex Syst 4(4)469–479CrossRefzbMATHGoogle Scholar
  14. 14.
    Scherer MA, Melo F, Marder M (1999) Sand ripples in an oscillating annular sand–water cell. Phys Fluids 11:58CrossRefzbMATHGoogle Scholar
  15. 15.
    Stegner A, Wesfreid JE (1999) Dynamical evolution of sand ripples under water. Phys Rev E 60:R3487CrossRefGoogle Scholar
  16. 16.
    Joly S, Raquois A, Paris F, Hamdoun B, Auvray L, Ausserre D, Gallot Y (1996) Early stage of spinodal decomposition in 2D. Phys Rev Lett 77:4394CrossRefGoogle Scholar
  17. 17.
    Langer JS (1971) Theory of spinodal decomposition in alloys. Ann Phys 65:53CrossRefGoogle Scholar
  18. 18.
    Villain-Guillot S (2004) Coalescence in the 1D Cahn–Hilliard model. J Phys A Math Gen 37:6929MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Calisto H, Clerc MG, Rojas R, Tirapegui E (2000) Bubbles interaction in Canh-Hilliard equation. Phys Rev Lett 85:3805CrossRefGoogle Scholar
  20. 20.
    Argentina M, Clerc MG, Rojas R, Tirapegui E (2005) Coarsening dynamics of the one-dimensional Cahn-Hilliard model. Phys Rev E 71:046210MathSciNetCrossRefGoogle Scholar
  21. 21.
    Buzdin AI, Kachkachi H (1997) Generalized Ginzburg-Landau theory for nonuniform FFLO superconductors. Phys Lett A 225:341CrossRefGoogle Scholar
  22. 22.
    Andelman D, Brochard F, Joanny J-F (1987) Phase transitions in Langmuir monolayers of polar molecules. J Chem Phys 86:3673CrossRefGoogle Scholar
  23. 23.
    Liu F, Goldenfeld N (1989) Dynamics of phase separation in block copolymer melts. Phys Rev A 39:4805CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Laboratoire Onde et Matière d’AquitaineUniversité Bordeaux I351Talence CedexFrance

Personalised recommendations