Skip to main content

Dynamical Response of a Van der Pol System with an External Harmonic Excitation and Fractional Derivative

  • Chapter
  • First Online:
Discontinuity and Complexity in Nonlinear Physical Systems

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 6))

  • 1219 Accesses

Abstract

We examined the Van der Pol system with external forcing and a memory possessing fractional damping term. Calculating the basins of attraction we showed broad spectrum of nonlinear behaviour connected with sensitivity to the initial conditions. To quantify dynamical response of the system we propose the statistical 0–1 test. The results have been confirmed by bifurcation diagrams, phase portraits and Poincare sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Padovan J, Sawicki JT (1998) Nonlinear vibration of fractionally damped systems. Nonlinear Dyn 16:321–336

    Article  MathSciNet  MATH  Google Scholar 

  2. Seredynska M, Hanyga A (2005) Nonlinear differential equations with fractional damping with application to the 1dof and 2dof pendulum. Acta Mech 176:169–183

    Article  MATH  Google Scholar 

  3. Gao X, Yu J (2005) Chaos in the fractional order periodically forced complex Duffing’s systems. Chaos Solitons Fractals 24:1097–1104

    Article  MATH  Google Scholar 

  4. Sheu LJ, Chen HK, Tam LM (2007) Chaotic dynamics of the fractionally damped Duffing equation. Chaos Solitons Fractals 32:1459–1468

    Article  MATH  Google Scholar 

  5. Rossikhin YA, Shitikova MV (2010) Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl Mech Rev 63:010801

    Article  Google Scholar 

  6. Machado JAT, Silva MF, Barbosa RS, Jesus IS, Reis CM, Marcos MG, Galhano AF (2010) Some applications of fractional calculus in engineering. Math Probl Eng 2010, 639801

    Google Scholar 

  7. Van der Pol B (1926) On relaxation-oscillations. Philos Mag 2:978–992

    Google Scholar 

  8. Van der Pol B, Van der Mark J (1928) The heartbeat considered as a relaxation oscillation and an electrical model of the heart. Philos Mag Suppl 6:763–775

    Google Scholar 

  9. Steeb W-H, Kunick A (1987) Chaos in system with limit cycle. Int J Nonlinear Mech 22: 349–361

    Article  MathSciNet  MATH  Google Scholar 

  10. Kapitaniak T, Steeb W-H (1990) Transition to chaos in a generalized van der Pol’s equation. J Sound Vib 143:167–170

    Article  MATH  Google Scholar 

  11. Litak G, Spuz-Szpos G, Szabelski K, Warminski J (1999) Vibration analysis of a self-excited system with parametric forcing and nonlinear stiffness. Int J Bifurcat Chaos 9:493–504

    Article  MATH  Google Scholar 

  12. Pinto CMA, Machado JAT (2011) Complex order van der Pol oscillator. Nonlinear Dyn 65:247–254

    Article  Google Scholar 

  13. Attari, M., Haeri, M., Tavazoei MS (2010) Analysis of a fractional order Van der Pol-like oscillator via describing function method. Nonlinear Dyn 61:265–274

    Article  MATH  Google Scholar 

  14. Suchorsky MK, Rand RH (2012) A pair of van der Pol oscillators coupled by fractional derivatives. Nonlinear Dyn 69:313–324

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen J-H Chen W-C (2008) Chaotic dynamics of the fractionally damped van der Pol equation. Chaos Solitons Fractals 35:188–198

    Article  Google Scholar 

  16. Gottwald GA, Melbourne I (2004) A new test for chaos in deterministic systems. Proc R Soc A 460:603–611

    Article  MathSciNet  MATH  Google Scholar 

  17. Gottwald GA, Melbourne I (2005) Testing for chaos in deterministic systems with noise. Physica D 212:100–110

    Article  MathSciNet  MATH  Google Scholar 

  18. Podlubny I (1999) Fractional differential equations. Academic, San Diego

    MATH  Google Scholar 

  19. Petras I (2010) Fractional-order nonlinear systems: modeling, analysis and simulation. Springer, New York

    Google Scholar 

  20. Falconer I, Gottwald GA, Melbourne I, Wormnes K (2007) Application of the 0–1 test for chaos to experimental data. SIAM J Appl Dyn Syst 6:95–402

    Article  MathSciNet  Google Scholar 

  21. Litak G, Syta A, Wiercigroch M (2009) Identification of chaos in a cutting process by the 0–1 test. Chaos Solitons Fractals 40:2095–2101

    Article  Google Scholar 

  22. Litak G, Syta A, Budhraja M, Saha LM (2009) Detection of the chaotic behaviour of a bouncing ball by the 0–1 test. Chaos Solitons Fractals 42:1511–1517

    Article  Google Scholar 

  23. Bernardini D, Rega G, Litak G, Syta A (2013) Identification of regular and chaotic isothermal trajectories of a shape memory oscillator using the 0–1 test. Proc IMechE Part K J Multi-body Dyn 227:17–22

    Google Scholar 

  24. Krese B, Govekar E (2012) Nonlinear analysis of laser droplet generation by means of 0–1 test for chaos. Nonlinear Dyn 67:2101–2109

    Article  Google Scholar 

  25. Litak G, Schubert S, Radons G (2012) Nonlinear dynamics of a regenerative cutting process. Nonlinear Dyn 69:1255–1262

    Article  MathSciNet  Google Scholar 

  26. Kantz H (1994) A robust method to estimate the maximal Lyapunov exponent of a time series. Phys Lett A 185:77–87

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the 7th Framework Programme FP7- REGPOT-2009-1, under Grant Agreement No. 245479. The authors are grateful prof. Stefano Lenci for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadiusz Syta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Syta, A., Litak, G. (2014). Dynamical Response of a Van der Pol System with an External Harmonic Excitation and Fractional Derivative. In: Machado, J., Baleanu, D., Luo, A. (eds) Discontinuity and Complexity in Nonlinear Physical Systems. Nonlinear Systems and Complexity, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-01411-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01411-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01410-4

  • Online ISBN: 978-3-319-01411-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics