Advertisement

Dynamical Response of a Van der Pol System with an External Harmonic Excitation and Fractional Derivative

  • Arkadiusz Syta
  • Grzegorz Litak
Chapter
Part of the Nonlinear Systems and Complexity book series (NSCH, volume 6)

Abstract

We examined the Van der Pol system with external forcing and a memory possessing fractional damping term. Calculating the basins of attraction we showed broad spectrum of nonlinear behaviour connected with sensitivity to the initial conditions. To quantify dynamical response of the system we propose the statistical 0–1 test. The results have been confirmed by bifurcation diagrams, phase portraits and Poincare sections.

Keywords

Van der Pol system Fractional derivative 0–1 test Chaos detection 

Notes

Acknowledgements

The authors gratefully acknowledge the support of the 7th Framework Programme FP7- REGPOT-2009-1, under Grant Agreement No. 245479. The authors are grateful prof. Stefano Lenci for discussions.

References

  1. 1.
    Padovan J, Sawicki JT (1998) Nonlinear vibration of fractionally damped systems. Nonlinear Dyn 16:321–336MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Seredynska M, Hanyga A (2005) Nonlinear differential equations with fractional damping with application to the 1dof and 2dof pendulum. Acta Mech 176:169–183CrossRefzbMATHGoogle Scholar
  3. 3.
    Gao X, Yu J (2005) Chaos in the fractional order periodically forced complex Duffing’s systems. Chaos Solitons Fractals 24:1097–1104CrossRefzbMATHGoogle Scholar
  4. 4.
    Sheu LJ, Chen HK, Tam LM (2007) Chaotic dynamics of the fractionally damped Duffing equation. Chaos Solitons Fractals 32:1459–1468CrossRefzbMATHGoogle Scholar
  5. 5.
    Rossikhin YA, Shitikova MV (2010) Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl Mech Rev 63:010801CrossRefGoogle Scholar
  6. 6.
    Machado JAT, Silva MF, Barbosa RS, Jesus IS, Reis CM, Marcos MG, Galhano AF (2010) Some applications of fractional calculus in engineering. Math Probl Eng 2010, 639801Google Scholar
  7. 7.
    Van der Pol B (1926) On relaxation-oscillations. Philos Mag 2:978–992Google Scholar
  8. 8.
    Van der Pol B, Van der Mark J (1928) The heartbeat considered as a relaxation oscillation and an electrical model of the heart. Philos Mag Suppl 6:763–775Google Scholar
  9. 9.
    Steeb W-H, Kunick A (1987) Chaos in system with limit cycle. Int J Nonlinear Mech 22: 349–361MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kapitaniak T, Steeb W-H (1990) Transition to chaos in a generalized van der Pol’s equation. J Sound Vib 143:167–170CrossRefzbMATHGoogle Scholar
  11. 11.
    Litak G, Spuz-Szpos G, Szabelski K, Warminski J (1999) Vibration analysis of a self-excited system with parametric forcing and nonlinear stiffness. Int J Bifurcat Chaos 9:493–504CrossRefzbMATHGoogle Scholar
  12. 12.
    Pinto CMA, Machado JAT (2011) Complex order van der Pol oscillator. Nonlinear Dyn 65:247–254CrossRefGoogle Scholar
  13. 13.
    Attari, M., Haeri, M., Tavazoei MS (2010) Analysis of a fractional order Van der Pol-like oscillator via describing function method. Nonlinear Dyn 61:265–274CrossRefzbMATHGoogle Scholar
  14. 14.
    Suchorsky MK, Rand RH (2012) A pair of van der Pol oscillators coupled by fractional derivatives. Nonlinear Dyn 69:313–324MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Chen J-H Chen W-C (2008) Chaotic dynamics of the fractionally damped van der Pol equation. Chaos Solitons Fractals 35:188–198CrossRefGoogle Scholar
  16. 16.
    Gottwald GA, Melbourne I (2004) A new test for chaos in deterministic systems. Proc R Soc A 460:603–611MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gottwald GA, Melbourne I (2005) Testing for chaos in deterministic systems with noise. Physica D 212:100–110MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Podlubny I (1999) Fractional differential equations. Academic, San DiegozbMATHGoogle Scholar
  19. 19.
    Petras I (2010) Fractional-order nonlinear systems: modeling, analysis and simulation. Springer, New YorkGoogle Scholar
  20. 20.
    Falconer I, Gottwald GA, Melbourne I, Wormnes K (2007) Application of the 0–1 test for chaos to experimental data. SIAM J Appl Dyn Syst 6:95–402MathSciNetCrossRefGoogle Scholar
  21. 21.
    Litak G, Syta A, Wiercigroch M (2009) Identification of chaos in a cutting process by the 0–1 test. Chaos Solitons Fractals 40:2095–2101CrossRefGoogle Scholar
  22. 22.
    Litak G, Syta A, Budhraja M, Saha LM (2009) Detection of the chaotic behaviour of a bouncing ball by the 0–1 test. Chaos Solitons Fractals 42:1511–1517CrossRefGoogle Scholar
  23. 23.
    Bernardini D, Rega G, Litak G, Syta A (2013) Identification of regular and chaotic isothermal trajectories of a shape memory oscillator using the 0–1 test. Proc IMechE Part K J Multi-body Dyn 227:17–22Google Scholar
  24. 24.
    Krese B, Govekar E (2012) Nonlinear analysis of laser droplet generation by means of 0–1 test for chaos. Nonlinear Dyn 67:2101–2109CrossRefGoogle Scholar
  25. 25.
    Litak G, Schubert S, Radons G (2012) Nonlinear dynamics of a regenerative cutting process. Nonlinear Dyn 69:1255–1262MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kantz H (1994) A robust method to estimate the maximal Lyapunov exponent of a time series. Phys Lett A 185:77–87CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringLublin University of TechnologyLublinPoland

Personalised recommendations