Skip to main content

Parameter Optimization of Fractional Order PI λ D μ Controller Using Response Surface Methodology

  • Chapter
  • First Online:
Book cover Discontinuity and Complexity in Nonlinear Physical Systems

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 6))

Abstract

This chapter presents optimization of fractional order PI λ D μ control parameters by using response surface methodology. The optimization process is observed on a fractional order diffusion system subject to input hysteresis which is defined with Riemann–Liouville fractional derivative. The system is transferred to a fractional order state space model by using eigenfunction expansion method and then Grünwald–Letnikov approximation is applied to solve the system numerically. The necessary data for response surface analysis are read from the obtained numerical solution. Finally, second-order polynomial response surface mathematical model for the experimental design is presented and the optimum control parameters are predicted from this response surface model. The proposed optimization method is compared with the technique of minimization of integral square error by means of settling time and the results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal OP (2004) A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn 38:323–337

    Article  MATH  Google Scholar 

  2. Agrawal OP, Defterli Ö, Baleanu D (2010) Fractional optimal control problems with several state and control variables. J Vib Control 16:1967–1976

    Article  MathSciNet  MATH  Google Scholar 

  3. Baleanu D, Defterli Ö, Agrawal OP (2009) A central difference numerical scheme for fractional optimal control problems. J Vib Control 15:583–597

    Article  MathSciNet  MATH  Google Scholar 

  4. Baleanu D, Diethelm K, Scalas E, Trujillo JJ (2012) Fractional calculus models and numerical methods. Series on complexity, nonlinearity and chaos. World Scientific, Singapore

    Google Scholar 

  5. Barbosa RS, Silva MF, Machado JAT (2009) Tuning and application of integer and fractional order PID controllers. Intell Eng Syst Comput Cybern 5:245–255

    Article  Google Scholar 

  6. Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc Series B 13:1–38

    MathSciNet  MATH  Google Scholar 

  7. Cao JY, Liang J, Cao BG (2005) Optimization of fractional order PID controllers based on genetic algorithms. Proc Int Conf Mach Learn Cybern 9:5686–5689

    Google Scholar 

  8. Castillo ED (2007) Process optimization - a statistical approach. Springer, New York

    Google Scholar 

  9. Demirtaş M, Karaoglan AD (2012) Optimization of PI parameters for DSP-based permanent magnet brushless motor drive using response surface methodology. Energy Convers Manag 56:104–111

    Article  Google Scholar 

  10. Efe MÖ (2010) Fractional order sliding mode controller design for fractional order dynamic systems. New Trends Nanotechnol Fract Calc Appl 5:463–470

    Article  Google Scholar 

  11. Ekren O, Ekren BY (2008) Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology. Appl Energy 85:1086–1101

    Article  Google Scholar 

  12. Giesbrecht FG, Gumpertz ML (2004) Planning, construction, and statistical analysis of comparative experiments. Wiley, New Jersey

    Book  MATH  Google Scholar 

  13. İskender BB, Özdemir N, Karaoglan AD (2012) Tuning of fractional order \({\mathit{PI\,}}^{\lambda }{D}^{\mu }\) controller with response surface methodology. In: Proceedings of IEEE 4th international conference on nonlinear science and complexity, pp 145–149, 6–11 August 2012

    Google Scholar 

  14. Lino P, Maione G (2007) New tuning rules for fractional PI α controllers. Nonlinear Dyn 49:251–257

    Article  MATH  Google Scholar 

  15. Mason RL, Gunst RF, Hess JL (2003) Statistical design and analysis of experiments, 2nd edn. Wiley, New Jersey

    Book  MATH  Google Scholar 

  16. Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New York

    MATH  Google Scholar 

  17. Montgomery DC (2005) Design and analysis of experiments: response surface method and designs. Wiley, New Jersey

    Google Scholar 

  18. Moradi MH, Johnson MA (2005) PID control. Springer, London

    Google Scholar 

  19. Oldham KB, Spanier J (1974) The fractional calculus. Academic, New York

    MATH  Google Scholar 

  20. Oustaloup A (1995) La Derivation Non Enteire. HERMES, Paris

    Google Scholar 

  21. Özdemir N, İskender BB (2010) Fractional order control of fractional diffusion systems subject to input hysteresis. J Comput Nonlinear Dyn 5:021002(1–5)

    Google Scholar 

  22. Özdemir N, Karadeniz D İskender BB (2009) Fractional optimal control problem of a distributed system in cylindrical coordinates. Phys Lett A 373:221–226

    Article  MathSciNet  MATH  Google Scholar 

  23. Podlubny I (1999) Fractional differential equations. Academic, San Diego

    MATH  Google Scholar 

  24. Podlubny I (1999) Fractional-order systems and \({\mathit{PI\,}}^{\lambda }{D}^{\mu }\) -controllers. IEEE Trans Automat Contr 44:208–214

    Article  MathSciNet  MATH  Google Scholar 

  25. Su CY, Stepanenko Y, Svoboda J, Leung TP (2000) Robust and adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis. IEEE Trans Automat Contr 45:2427–2432

    Article  MathSciNet  MATH  Google Scholar 

  26. Valerio D, Costa JS (2006) Tuning of fractional PID controllers with Ziegler-Nichols-type rules. J Signal Process 86:2771–2784

    Article  MATH  Google Scholar 

  27. Zhao C, Xue D, Chen YQ (2005) A fractional order PID tuning algorithm for a class of fractional order plants. In: Proceedings of the IEEE international conference on mechatronics & automation, Niagara Falls, vol 1, pp 216–221

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beyza Billur İskender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

İskender, B.B., Özdemir, N., Karaoglan, A.D. (2014). Parameter Optimization of Fractional Order PI λ D μ Controller Using Response Surface Methodology. In: Machado, J., Baleanu, D., Luo, A. (eds) Discontinuity and Complexity in Nonlinear Physical Systems. Nonlinear Systems and Complexity, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-01411-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01411-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01410-4

  • Online ISBN: 978-3-319-01411-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics