Skip to main content

Simulation Study into \(\mathrm{LG}_{33}\) Mode Interferometry and Production

  • Chapter
  • First Online:
Precision Interferometry in a New Shape

Part of the book series: Springer Theses ((Springer Theses))

  • 826 Accesses

Abstract

Motivated by the potential factor of 2.65 improvement in coating Brownian noise power spectral density using the \(LG_{33}\) mode, as shown in section 2.7, a numerical investigation into the interferometric performance of the \(LG_{33}\) mode was pursued.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is a somewhat arbitrary number, but it is commonly used throughout the gravitational wave community, and is related to the acceptable round trip cavity losses.

  2. 2.

    The opposite sign of the error signal in the case of the \(\mathrm{LG}_{33}\) mode is of no consequence; one could simply alter the demodulation phase or invert the signal after demodulation to recover the same sign.

  3. 3.

    Cavity tuning, expressed in degrees, is a convenient definition of either cavity length change as a fraction of wavelength, or frequency change as a function of cavity FSR.

  4. 4.

    In the misalignment regime we are concerned with (100s of picoradians), the fringe spacing is of the order of km; far greater than the overlapping region of the beams.

References

  1. A. Freise, M. Mantovani. Initial Set of Optical Parameters for Numerical Simulations Towards Advanced VIRGO, Technical Report VIR-NOT-EGO-1390-330 (Virgo, 2006)

    Google Scholar 

  2. A.E. Siegman, Lasers, (University Science Books, 1986). See also: Errata List for LASERS, http://www.stanford.edu/siegman/lasers_book_errata.pdf

  3. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B Lasers Opt. 31, 97–105 (1983)

    Article  ADS  Google Scholar 

  4. A. Freise, G. Heinzel, H. Lück, R. Schilling, B. Willke, K. Danzmann, Frequency-domain interferometer simulation with higher-order spatial modes. Class. Quantum Gravity 21(5), S1067–S1074 (2004)

    Article  ADS  Google Scholar 

  5. E. Morrison, D.I. Robertson, H. Ward, B.J. Meers, Automatic alignment of optical interferometers. Appl. Opt. 33, 5041–5049 (1994)

    Article  ADS  Google Scholar 

  6. G. Heinzel, Advanced Optical Techniques for Laser-Interferometric Gravitational-Wave Detectors, Ph.D. thesis (MPI fuer Quantenoptik, Germany, 1999)

    Google Scholar 

  7. M. Mantovani, A. Freise, Evaluating mirror alignment systems using the optical sensing matrix. J. Phys. Conf. Ser. 122(1), 012026-+ (2008)

    Google Scholar 

  8. J.A. Sidles, D. Sigg, Optical torques in suspended Fabry Perot interferometers. Phys. Lett. A 354, 167–172 (2006)

    Article  ADS  Google Scholar 

  9. S. Ballmer, L. Barsotti, M. Evans, P. Fritschel, V. Frolov, G. Mueller, B. Slagmolen, S. Waldman, R. Abbott, R. Adhikari, Advligo Interferometer Sensing and Control Conceptual Design, Technical report (LIGO, 2008)

    Google Scholar 

  10. Advanced ligo reference design. LIGO Technical report M060056 (2007)

    Google Scholar 

  11. S. Chelkowski, S. Hild, A. Freise. Prospects of higher-order Laguerre-Gauss modes in future gravitational wave detectors. Phys. Rev. D (Particles, Fields, Gravitation, and Cosmology), 79(12), 122002 (2009)

    Google Scholar 

  12. http://lhocds.ligo-wa.caltech.edu:8000/advligo/GWINC

  13. S. Hild, A. Freise, A novel concept for increasing the peak sensitivity of LIGO by detuning the arm cavities. Class. Quantum Gravity 24, 5453–5460 (2007)

    Article  ADS  MATH  Google Scholar 

  14. B. Mours, E. Tournefier, J.-Y. Vinet, Thermal noise reduction in interferometric gravitational wave antennas: using high order TEM modes. Class. Quantum Gravity 23, 5777–5784 (2006)

    Article  ADS  MATH  Google Scholar 

  15. M.W. Beijersbergen, R.P.C. Coerwinkel, M. Kristensen, J.P. Woerdman, Helical-wavefront laser beams produced with a spiral phaseplate. Opts. Commun. 112, 321–327 (1994)

    Article  ADS  Google Scholar 

  16. G.A. Turnbull, D.A. Robertson, G.M. Smith, L. Allen, M.J. Padgett, The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate. Opts. Commun. 127, 183–188 (1996)

    Article  ADS  Google Scholar 

  17. J. Arlt, K. Dholakia, L. Allen, M.J. Padgett, The production of multiringed Laguerre-Gaussian modes by computer-generated holograms. J. Mod. Opts. 45, 1231–1237 (1998)

    Article  ADS  Google Scholar 

  18. N. Matsumoto, T. Ando, T. Inoue, Y. Ohtake, N. Fukuchi, T. Hara, Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators. J. Opt. Soc. America A 25, 1642-+ (2008)

    Google Scholar 

  19. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992)

    Article  ADS  Google Scholar 

  20. J. Courtial, M.J. Padgett, Performance of a cylindrical lens mode converter for producing Laguerre-Gaussian laser modes. Opts. Commun. 159, 13–18 (1999)

    Article  ADS  Google Scholar 

  21. S.A. Kennedy, M.J. Szabo, H. Teslow, J.Z. Porterfield, E.R. Abraham, Creation of Laguerre-Gaussian laser modes using diffractive optics. Phys. Rev. A 66(4), 043801-+ (2002)

    Google Scholar 

  22. C. Schild of Jenoptik AG, Private communication by email, Feb 2011

    Google Scholar 

  23. Ljiljana Janicijevic, Suzana Topuzoski, Fresnel and fraunhofer diffraction of a gaussian laser beam by fork-shaped gratings. J. Opt. Soc. Am. A 25(11), 2659–2669 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Ya, Bekshaev, A.I. Karamoch. Spatial characteristics of vortex light beams produced by diffraction gratings with embedded phase singularity. Opts. Commun. 281(6), 1366–1374 (2008)

    Google Scholar 

  25. J.Y. Vinet, Virgo collaboration. The Virgo Book of Physics: Optics and Related Topics (Virgo, 2001)

    Google Scholar 

  26. M.A. Clifford, J. Arlt, J. Courtial, K. Dholakia, High-order Laguerre-Gaussian laser modes for studies of cold atoms. Opts. Commun. 156, 300–306 (1998)

    Article  ADS  Google Scholar 

  27. A. Freise, K. Strain, Interferometer techniques for gravitational-wave detection. Living Rev. Relativ. 13, 1-+ (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Fulda .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fulda, P. (2014). Simulation Study into \(\mathrm{LG}_{33}\) Mode Interferometry and Production. In: Precision Interferometry in a New Shape. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01375-6_3

Download citation

Publish with us

Policies and ethics