Skip to main content

Genetic Structure and Diversity of Animal Populations Exposed to Metal Pollution

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology, Volume 227

Abstract

The introduction of toxic substances into the environment by anthropogenic or natural activities is widespread and causes significant perturbation. Therefore, increasing attention has been focused on better understanding the long-term ecological effects of chronically exposed populations, communities, and ecosystems. The increased understanding of such effects has resulted not only from enhanced biomonitoring activities but also from developing new toxicity and ecotoxicity data for various species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal S, Sohal R (1994) DNA oxidative damage and life expectancy in houseflies. Proc Nat Acad Sci U S A 91:1232–1235

    Google Scholar 

  • Anderson S, Sadinski W, Shugart L, Brussard P, Depledge M, Ford T, Hose J, Stegeman J, Suk W, Wirgin I, Wogan G (1994) Genetic and molecular ecotoxicology: a research framework. Environ Health Perspect 102:3–8

    Google Scholar 

  • Anthony R, Koslowski R (1982) Heavy metals in tissues of small mammals inhabiting waste-water-irrigated habitats. J Environ Qual 11:20–22

    CAS  Google Scholar 

  • Antón A, Serran T, Angulo E, Ferrero G, Rallo A (2000) The use of two species of crayfish as environmental quality sentinels: the relationship between heavy metal content, cell and tissue biomarkers and physico-chemical characteristics of the environment. Sci Total Environ 249:239–251

    Google Scholar 

  • Arif I, Khan H (2009) Molecular markers for biodiversity analysis of wildlife animals: a brief review. Animal Biodiv Conser 32:9–17

    Google Scholar 

  • Athrey N, Leberg P, Klerks P (2007) Laboratory culturing and selection for increased resistance to cadmium reduce genetic variation in the least killfish, Heterandria Formosa. Environ Toxicol Chem 26:1916–1921

    CAS  Google Scholar 

  • Baker RJ, Bickham AM, Bondarkov M, Gaschak SP, Matson CW, Rodgers BE, Wickliffe JK, Chesser RK (2001) Consequences of polluted environments on population structure: the bank vole (Clethrionomys glareolus) at Chornobyl. Ecotoxicology 10:211–216

    CAS  Google Scholar 

  • Baranski B (1987) Effect of cadmium on prenatal development and on tissue cadmium, copper, and zinc concentrations in rats. Environ Res 42:54–62

    CAS  Google Scholar 

  • Barret S, Khon J (1991) Genetic and evolutionary consequences of small populations in plant: implications for conservation. In: Folk D, Holsinger K (eds) Genetics and conservation of rare plants. Oxford University Press Inc, New York, pp 3–30

    Google Scholar 

  • Battaglia B, Bisol P, Rodino E (1980) Experimental studies on the genetic effects of the marine pollution. Helgol Meer 33:587–595

    Google Scholar 

  • Belfiore N, Anderson S (1998) Genetic patterns as a tool for monitoring and assesment of environmental impacts: the example of genetic ecotoxicology. Environ Monit Assess 51:465–479

    Google Scholar 

  • Belfiore N, Anderson S (2001) Effects of contaminants on genetic patterns in aquatic organisms: a review. Mutat Res 489:97–122

    CAS  Google Scholar 

  • Benedetti M, Martuccio G, Fattorini D, Canapa A, Barucca M, Nigro M, Regoli F (2007) Oxidative and modulatory effects of trace metals on metabolism of polycyclic aromatic hydrocarbons in the Antarctic fish Trematomus bernacchii. Aquatic Toxicol 85:167–175

    CAS  Google Scholar 

  • Benton M, Malott M, Trybula J, Dean D, Guttman S (2002) Genetic effects of mercury contamination on aquatic snail populations: allozyme genotypes and DNA strand breakage. Environ Toxicol Chem 21:584–589

    CAS  Google Scholar 

  • Berckmoes V, Scheirs J, Jordaens K, Blust R, Backeljau T, Verhagen R (2005) Effects of environmental pollution on microsatellite DNA diversity in wood mouse (Apodemus sylvaticus) populations. Environ Toxicol Chem 24:2898–2907

    CAS  Google Scholar 

  • Bernard A (2008) Biomarkers of metal toxicity in population studies: research potential and interpretation issues. J Toxicol Environ Health Part A 71:1259–1265

    CAS  Google Scholar 

  • Bervoest L, Blust R (2003) Metal concentrations in water, sediment and gudgeon (Gobio gobio) from a pollution gradient: relationship with fish condition factor. Env Pollut 126:9–19

    Google Scholar 

  • Beyer W, Pattee O, Sileo L, Hoffman D, Mulhern B (1985) Metal contamination in wildlife living near two zinc smelters. Environ Pollut Series A 38:63–86

    CAS  Google Scholar 

  • Beyer W, Storm G (1995) Ecotoxicological damage from zinc smelting at Palmerton, Pennsylvania. In: Hoffman DJ, Rattner BA, Burton GA, Cairns JC (eds) Handbook of ecotoxicology. CRC Press, Inc, Boca Raton, pp 596–608

    Google Scholar 

  • Bickham J, Smolen M (1994) Somatic and heritable effects of environmental genotoxins and the emergence of evolutionary toxicology. Environ Health Perspect 102:25–28

    Google Scholar 

  • Bickham J, Sandhu S, Hebert P, Chikhi L, Athwal R (2000) Effects of chemical contaminants on genetic diversity in natural populations: implications for biomonitoring and ecotoxicology. Mutat Res 463:33–51

    CAS  Google Scholar 

  • Bisser J, Vogel L, Berger J, Hjelle B, Loew S (2004) Effects of heavy metals on immunocompetence of white-footed mice (Peromyscus leucopus). J Wildlife Dis 40:173–184

    Google Scholar 

  • Bourret V, Couture P, Campbell P, Bernatchez L (2008) Evolutionary ecotoxicology of wild yellow perch (Percha flavescens) populations chronically exposed to a polymetallic gradient. Aquat Toxicol 86:76–90

    CAS  Google Scholar 

  • Brown A, Hosken D, Balloux F, Bickley L, LePage G, Owen S, Hetheridge M, Tyler C (2009) Genetic variation, inbreeding and chemical exposure-combined effects in wildlife and critical considerations for ecotoxicology. Philos Trans R Soc Lond B Biol Sci 364:3377–3390

    Google Scholar 

  • Burger J, Gochfeld M (2004) Marine birds as sentinels of environmental pollution. Ecohealth 1:263–274

    Google Scholar 

  • Chagnon N, Guttman S (1989) Differential survivorship of allozyme genotypes in mosquitofish populations exposed to copper or cadmium. Environ Toxicol Chem 8:319–326

    CAS  Google Scholar 

  • Chapman PM (2002) Integrating toxicology and ecology: putting the eco into cotoxicology. Mar Poll Bull 44:7–15

    CAS  Google Scholar 

  • Chen JZ, Hebert PDN (1999) Terminal branch haplotype analysis: a novel approach to investigate newly arisen variants of mitochondrial DNA in natural populations. Mutat Res-DNA Repair 434:219–231

    CAS  Google Scholar 

  • Clements W (2000) Integrating effects of contaminants across levels of biological organization: an overview. J Aquat Ecosyst Stress Recovery 7:113–116

    Google Scholar 

  • Cooke J, Andrews S, Johnson M (1990) Lead, zinc, cadmium, and fluoride in small mammals from contaminated grassland established on fluorspar tailings. Water Air Soil Pollut 51:43–54

    CAS  Google Scholar 

  • Coutellec M, Barata C (2011) An introduction to evolutionary processes in ecotoxicology. Ecotoxicology 20:513–523

    Google Scholar 

  • Depledge M (1994) Genotypic toxicity: implications for individuals and populations. Environ Health Perspect 102:101–104

    Google Scholar 

  • De Wolf H, Blust R, Backeljau T (2004) The population genetic structure of Littorina littorea (Mollusca: Gastropoda) along a pollution gradient in the Scheldt estuary (The Netherlands) using RAPD analysis. Sci Total Environ 325:59–69

    Google Scholar 

  • Diamond S, Newman M, Mulvey M, Dixon P, Martinson D (1989) Allozyme genotype and time to death of mosquitofish, Gambusia affinis (Baird and Girard), during acute exposure to inorganic mercury. Environ Toxicol Chem 8:613–622

    CAS  Google Scholar 

  • Diamond S, Newman M, Mulvey M, Guttman S (1991) Allozyme genotype and time-to-death of mosquitofish, Gambusia holbrooki, during acute inorganic mercury exposure: a comparison of populations. Aquat Toxicol 21:119–134

    CAS  Google Scholar 

  • Dimsoski P, Toth G (2001) Development of DNA-based microsatellite marker technology for studies of genetic diversity in stressor impacted populations. Ecotoxicology 10:229–232

    CAS  Google Scholar 

  • D´Surney S, Shugart L, Theodorakis C (2001) Genetic markers and genotyping methodologies: an overview. Ecotoxicology 10:201–204

    Google Scholar 

  • Duan Y, Guttman S, Oris J, Bailer A (2001) Differential survivorship among allozyme genotypes of Hyalella azteca exposed to cadmium, zinc or low pH. Aquat Toxicol 54:15–28

    CAS  Google Scholar 

  • Durrant CJ, Stevens JR, Hogstrand C, Bury NR (2011) The effect of metal pollution on the population genetic structure of brown trout (Salmo trutta L.) residing in the River Hayle, Cornwall, UK. Environ Pollut 159:3595–3603

    CAS  Google Scholar 

  • Eeva T, Belskii E, Kuranov B (2006) Environmental pollution affects genetic diversity in wild bird populations. Mutat Res 608:8–15

    CAS  Google Scholar 

  • Ehrenfeld D (1992) Ecosystem health and ecological theories. In: Norton BG, Heskell B (eds) Ecosystem health. New goals for environmental management. Island Press, Washington, DC, pp 135–143

    Google Scholar 

  • Eisler R (1997) Zinc hazards to plants and animals with emphasis on fishery and wildlife resources. In: Chemisinoff PN (ed) Ecological issues and environmental impact assessment. Gulf Publ Co, Houston, pp 443–537

    Google Scholar 

  • Ekschmitt K, Korthals G (2006) Nematodes as sentinels of heavy metals and organic toxicants in the soil. J Nematol 38:13–19

    CAS  Google Scholar 

  • Endler J (1995) Multiple-trait coevolution and environmental gradients in guppies. Trends Ecol Evol 10:22–29

    CAS  Google Scholar 

  • EPA Environmental Protection Agency (2000) Innovative remediation technologies: field scale demonstration projects in North America.

    Google Scholar 

  • Evenden AJ, Depledge MH (1997) Genetic susceptibility in ecosystems: the challenge for ecotoxicology. Environ Health Perspect 105:849–854

    CAS  Google Scholar 

  • Fratini S, Zane L, Ragionieri L, Vannini M, Cannicc S (2008) Relationship between heavy metal accumulation and genetic variability decrease in the intertidial crab Pachygrapsus marmoratus (Decapoda; Grapsidae). Est Coast Shelf Sci 79:679–686

    Google Scholar 

  • Gardeström J, Dahl U, Kotsalainen O, Maxson A, Elfwing T, Grahn M, Bengtsson B, Breitholtz M (2008) Evidence of population genetic effects of long-term exposure to contaminated sediments: a multi-endpoint study with copepods. Aquat Toxicol 86:426–436

    Google Scholar 

  • Gillespie R, Guttman SI (1989) Effects of contaminants on the frequencies of allozymes in populations of the central stoneroller. Environ Toxicol Chem 8:309–317

    CAS  Google Scholar 

  • Guttman S (1994) Population genetic structure and ecotoxicology. Environ Health Perspect 102:97–100

    Google Scholar 

  • Haimi J, Knott K, Selonen S, Laurikainen M (2006) Has long-term metal exposure induced changes in life history traits and genetic diversity of the enchtraeid worm Cognettia sphagnetorum. Environ Poll 140:463–470

    CAS  Google Scholar 

  • Harper-Arabie R, Wirth E, Fulton M, Scott G, Ross P (2004) Protective effects of allozyme genotype during chemical exposure in the grass shrimp, Palaemonetes pugio. Aquat Toxicol 70:41–54

    CAS  Google Scholar 

  • Hebert PM, Murdoch-Luiker M (1996) Genetic effects of contaminant exposure-towards an assessment of impacts on animal populations. Sci Total Environ 191:23–58

    CAS  Google Scholar 

  • Hoffman A, Daborn P (2007) Towards genetic markers in animal populations as biomonitors for human-induced environmental change. Ecol Lett 10:63–76

    Google Scholar 

  • Hoffmann A, Willi Y (2008) Detecting genetic responses to environmental change. Nat Rev Genet 9:421–429

    CAS  Google Scholar 

  • Husby M, Hausbeck J, McBee K (1999) Chromosomal aberrancy in white-footed mice (Peromyscus leucopus) collectd on abandoned coal strip mines, Oklahoma, USA. Environ Toxicol Chem 18:919–925

    CAS  Google Scholar 

  • Johnson M, Roberts R, Hutton M (1978) Distribution of lead, zinc, and cadmium in small mammals from polluted environments. Oikos 30:153–159

    CAS  Google Scholar 

  • Jordaens K, De Wolf H, Van Houtte N, Vandecasteele B, Backeljau T (2006) Genetic variation in two land snails Cepaea nemoralis and Succinea putris (Gastropoda, Pulmonata), from sites differing in heavy metal content. Genetica 128:227–239

    Google Scholar 

  • Keane B, Collier M, Rogstad S (2005) Pollution and genetic structure of North American populations of the common dandelion (Taraxacum officinale). Environ Monit Assess 105:341–357

    CAS  Google Scholar 

  • Kim S, Rodriguez M, Suh J, Song J (2003) Emergent effects of heavy metal pollution at a population level: Littorina brevicula a study case. Mar Pollut Bull 46:74–80

    Google Scholar 

  • Kisseberth W, Sunderberg J, Nyboer R, Reynolds J, Kasten S, Beasley V (1984) Industrial lead contamination of an Illinois wildlife refuge and indigenous small mammals. J Am Vet Med Assoc 185:1309–1313

    CAS  Google Scholar 

  • Laurinolli M, Bendell-Young L (2006) Copper, zinc, and cadmium concentrations in Peromyscus maniculatus sampled near an abandoned copper mine. Environ Contam Toxicol 30:481–486

    Google Scholar 

  • Lee C, Newman M, Mulvey M (1992) Time to death of mosquitofish (Gambusia holbrooki) during acute inorganic mercury exposure: population structure effects. Arc Environ Contam Toxicol 22:284–287

    CAS  Google Scholar 

  • Lee JS, Raisuddin S, Schlenk D (2008) Kryptolebias marmoratus (Poey 1880): a potential model species for molecular carcinogenesis and ecotoxicogenomics. J Fish Biol 72:1871–1889

    CAS  Google Scholar 

  • Levengood J, Heske E (2008) Heavy metal exposure, reproductive activity, and demographic patterns in white-footed mice (Peromyscus leucopus) inhabiting a contaminated wetland. Sci Total Environ 389:320–328

    CAS  Google Scholar 

  • Loveless M, Hamrick J (1984) Ecological determinants of genetic structure in plant population. Annu Rev Ecol Syst 15:65–95

    Google Scholar 

  • Lowe A, Harris S, Ashton P (2004) Ecological genetics: design, analysis and application. Blackwell Publishing, Oxford, 313 p

    Google Scholar 

  • Lucchini V (2003) AFLP: a useful tool for biodiversity conservation and management. Comptes Rendus Biol 326:43–48

    Google Scholar 

  • Lynch M, Conery U, Bürger R (1995) Mutation accumulation and the extinction of small population. Am Nat 146:489–518

    Google Scholar 

  • Ma W, Denneman W, Faber J (1991) Hazardous exposure of ground-living small mammals to cadmium and lead in contaminated terrestrial ecosystems. Arch Environ Contam Toxicol 20:266–270

    CAS  Google Scholar 

  • Ma X, Cowles D, Carter R (2000) Effect of pollution on genetic diversity in the Bay Mussel Mytilus galloprovincialis and the acorn bernacle Balanus gladula. Mar Environ Res 50:559–563

    CAS  Google Scholar 

  • Maes G, Raeymaekers J, Pampoulie C, Seynaeve A, Goemans G, Belpaire C, Volckaert F (2005) The catadromous European eel Anguilla anguilla (L.) as a model for freshwater evolutionary ecotoxicology: relationship between heavy metal bioaccumulation, condition and genetic variability. Aquat Toxicol 73:99–114

    CAS  Google Scholar 

  • Markert B, Wappelhorst O, Weckert V, Herpin U, Siewers U, Friese K, Breulmann G (1999) The use of bioindicators for monitoring the heavy-metal status of the environment. J Radioanal Nucl Chem 240:425–429

    CAS  Google Scholar 

  • Matson C, Lambert M, McDonald T, Autenrieth R, Donnelly K, Islamzadeh A, Politov D, Bickham J (2006) Evolutionary toxicology: population-level effects of chronic contaminant exposure on the marsh frogs (Rana ridibunda) of Azerbaijan. Environ Health Perspect 114:547–552

    CAS  Google Scholar 

  • Medina M, Correa J, Barata C (2007) Micro-evolution due to pollution: possible consequences for ecosystem responses to toxic stress. Chemosphere 67:2105–2114

    CAS  Google Scholar 

  • Moore M, Depledge M, Readman J, Leonard D (2004) An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management. Mutat Res 552:247–268

    CAS  Google Scholar 

  • Morgan AJ, Killie P, Sturzenbaum SR (2007) Microevolution and ecotoxicology of metals in invertebrates. Environ Sci Technol 41:1085–1096

    CAS  Google Scholar 

  • Mullen L, Hirschmann R, Prince K, Glenn T, Dewey M, Hoekstra H (2006) Sixty polymorphic microsatellite markers for the oldfield mouse developed in Peromyscus polionotus and Peromyscus maniculatus. Mol Ecol Notes 6:36–40

    CAS  Google Scholar 

  • Nedjoud G, Houria B, Rachid R, Amira D, Reda D (2009) Impact of pollution by industrial metallic dust on bio-accumulator organism Helix aspersa. Global Vet 3:276–280

    CAS  Google Scholar 

  • Nevo E, Shimony T, Libni M (1978) Pollution selection of allozyme polymorphisms in Barnacles. Experientia 34:1562–1564

    CAS  Google Scholar 

  • Nevo E, Lavie B, Ben-Shlomo R (1983) Selection of allelic isozyme polymorphisms in marine organisms: patern, theory and application. In: Ratazzi MC, Scandalios JC, Whitt GS (eds) Isozymes: current topics in biological and medical research. Genetics and Evolution AR Liss, New York, pp 69–92

    Google Scholar 

  • Newman M, Diamond S, Mulvey M, Dixon P (1989) Allozyme genotype and time to death of mosquitofish, Gambusia affinis (Baird and Girard) during acute toxicant exposure: a comparison of arsenate and inorganic mercury. Aquat Toxicol 15:141–156

    CAS  Google Scholar 

  • Pascoe G, Blanchet R, Liner G (1994) Bioavailability of metals and arsenic to small mammals at a mining waste-contaminated wetland. Arch Environ Contam Toxicol 27:44–50

    CAS  Google Scholar 

  • Patarnello T, Guinez R, Battaglia B (1991) Effects of pollution on heterozygosity in the bernacle Balanus amphitrite (Cirripedia: Thoracica). Mar Ecol Prog Ser 70:237–243

    Google Scholar 

  • Peles JD, Towler WI, Guttman SI (2003) Population genetic structure of earthworms (Lumbricus rubelluz) in soils contaminated by heavy metals. Ecotoxicology 12:379–386

    CAS  Google Scholar 

  • Poynton H, Varshavky J, Chang B, Cavigiolio G, Chan S, Holman P, Loguinov A, Bauer D, Komachi K, Theil E, Perkins E, Hughes O, Vulpe C (2007) Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity. Environ Sci Technol 47:1044–1050

    Google Scholar 

  • Roark S, Andrews J, Guttman S (2001) Population genetic structure of the western mosquitofish Gambusia Affinis, in a highly channelized portion of the San Antonio River in San Antonio, TX. Ecotoxicology 10:223–227

    CAS  Google Scholar 

  • Rogstad S, Keane B, Collier M (2003) Minisatellite DNA mutation rate in dandelions increases with leaf-tissue concentrations of Cr, Fe, Mn, and Ni. Environ Toxicol Chem 22:2093–2099

    CAS  Google Scholar 

  • Roh J, Sim SJ, Yi J, Park K, Chun K, Ryu D, Choi J (2009) Ecotoxicity of silver nanoparticles on the soil nematode Caenorhabditis elegans using functional ecotoxicogenomics. Environ Sci Technol 43:3933–3940

    CAS  Google Scholar 

  • Ross K, Cooper N, Bidwell J, Elder J (2002) Genetic diversity and metal tolerance of two marine species: a comparison between populations from contaminated and reference sites. Mar Poll Bull 44:671–679

    CAS  Google Scholar 

  • Scheirs J, De Coen A, Covaci A, Beernaert J, Kayawe V, Caturla M, De Wolf H, Baert P, Van Oostveldt P, Verhagen R, Blust R, De Coen W (2006) Genotoxicity in wood mice (Apodemus sylvaticus) along a pollution gradient: exposure age and gender related effects. Environ Toxicol Chem 25:2154–2162

    CAS  Google Scholar 

  • Smith G, Rongstad O (1982) Small mammal heavy metal concentrations from mined and control sites. Environ Poll 28:121–134

    CAS  Google Scholar 

  • Staton J, Schizas N, Chandler G, Coull B, Quattro J (2001) Ecotoxicology and population genetics: the emergence of “phylogeographic and evolutionary ecotoxicology”. Ecotoxicology 10:217–222

    CAS  Google Scholar 

  • Storelli M, Marcotrigiano G (2005) Bioindicator organisms: heavy metal pollution evaluation in the ionian sea (Mediterranean Sea-Italy). Environ Monit Assess 102:159–166

    CAS  Google Scholar 

  • Sues B, Tarashewski H, Rydlo M (1997) Intestinal fish parasites as heavy metal bioindicators: a comparison between Acanthocephalus lucci and zebra mussel, Dressena polymorpha. Bull Environ Contam Toxicol 59:14–21

    Google Scholar 

  • Sunderberg J, Okarsson A (1992) Placental and lactational transfer of mercury from rats exposed to methylmercury in their diet: speciation of mercury in the offspring. J Trace Elem Exp Med 5:47–56

    Google Scholar 

  • Talmage S, Walton B (1991) Small mammals as monitors of environmental contaminants. Rev Environ Contam Toxicol 119:47–145

    CAS  Google Scholar 

  • Theodorakis C, Swartz C, Rogers W, Bickham J, Donnely K, Adams S (2000) Relationship between genotoxicity, mutagenicity, and fish community structure in a contaminated stream. J Aquat Ecosyst Stress Recovery 7:131–143

    CAS  Google Scholar 

  • Theodorakis C (2001) Integration of genotoxic and population genetic endpoints in biomonitoring and risk assessment. Ecotoxicol 10:245–256

    CAS  Google Scholar 

  • Theodorakis CW, Bickham JW, Lamb T, Medica PA, Barret LT (2001) Integration of genotoxicity and population genetic analyses in kangaroo rats (Dipodomys merriami) exposed to radionuclide contamination at the nevada test site, USA. Environ Toxicol Chem 20:317–326

    CAS  Google Scholar 

  • Tremblay A, Lesbarreres D, Merritt T, Wilson C (2008) Genetic structure and phenotypic plasticity of yellow perch (Perca flavescens) populations influences by habitat, predation, and contamination gradients. Integr Environ Assess Manag 4:264–266

    Google Scholar 

  • Ungherese G, Mengoni A, Somigli S, Baroni D, Focardi S, Ugolini A (2010) Relationship between heavy metals pollution and genetic diversity in Mediterranean population of the sandhopper Talitrus saltator (Montagu) (Crustaceae, Amphipoda). Environ Pollut 158:1638–1643

    CAS  Google Scholar 

  • Van Straalen N (1999) Genetic biodiversity in toxicant-stressed populations. Prog Environ Sci 1:195–201

    Google Scholar 

  • Van Straalen N, Timmermans M (2002) Genetic variation in toxicant-stressed populations: an evaluation of the “genetic erosion” hypothesis. Hum Ecol Risk Assess 8:983–1002

    Google Scholar 

  • Villenueve D, Garcia-Reyero N, Escalon B, Jensen K, Cavallin J, Makynen E, Durhan E, Kahl M, Thomas L, Perkins E, Ankley G (2012) Ecotoxicogenomics to support ecological risk assessment: a case study with bisphenol A in fish. Environ Sci Technol 46:51–59

    Google Scholar 

  • Watanabe H, Kobayashi K, Kato Y, Oda S, Abe R, Tatarazako N, Iguchi T (2008) Transcriptome profiling in crustaceans as a tool for ecotoxicogenomics. Cell Biol Toxicol 24:641–647

    CAS  Google Scholar 

  • Weinstein I (1988) The origins of human cancer: molecular mechanism of carcinogenesis and their implications for cancer prevention and treatment. Cancer Res 48:4135–4143

    CAS  Google Scholar 

  • WHO. World Health Organization (2007) Health risks of heavy metals from long range transboundary air pollution, European Committee

    Google Scholar 

  • Yauk C, Quinn J (1996) Multilocus DNA fingerprinting reveals high rate of heritable genetic mutation in herring gulls nesting in an industrialized urban site. Proc Natl Acad Sci U S A 93: 12137–12141

    CAS  Google Scholar 

  • Yauk C, Fox G, McCarry B, Quinn J (2000) Induced minisatellite germline mutations in herring gulls (Larus argentatus) living near steel mills. Mutat Res 452:211–218

    CAS  Google Scholar 

Download references

Acknowledgments

P.M.G is a recipient of a fellowship from CONACYT. The authors thank Dr. Daniel Piñero Dalmau for his comments on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Rojas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mussali-Galante, P., Tovar-Sánchez, E., Valverde, M., Rojas, E. (2014). Genetic Structure and Diversity of Animal Populations Exposed to Metal Pollution. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology, Volume 227. Reviews of Environmental Contamination and Toxicology, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-319-01327-5_3

Download citation

Publish with us

Policies and ethics