Skip to main content

Breaking Dimensions: Adaptive Scoring with Sparse Grids

  • Chapter
  • First Online:
Book cover Realtime Data Mining

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

  • 1788 Accesses

Abstract

We introduce the concept of a sparse grid and show how this powerful approach to function space discretization may be employed to tackle high-dimensional machine learning problems of regression and classification. In particular, we address the issue of incremental computation of sparse grid regression coefficients so as to meet the requirements of realtime data mining. Conclusively, we present experimental results on real-world data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arge, E., Daelen, M., Tveito, A.: Approximation of scattered data using smooth grid functions. J. Comput. Appl. Math. 59, 191–205 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bokanowski, O., Garcke, J., Griebel, M., Klompmaker, I.: An adaptive sparse grid semi-lagrangian scheme for first order Hamilton-Jacobi Bellman equations, submitted to J. Sci. Comput., also available as INS Preprint No. 1207 (2012)

    Google Scholar 

  3. Bungartz, H.-J: Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung (in German). Dissertation, TU München (1992)

    Google Scholar 

  4. Bungartz, H.-J., Griebel, M., Röschke, D., Zenger, C.: Pointwise convergence of the combination technique for Laplace’s equation. East–west, J. Numer. Math. 2, 21–45 (1994)

    MATH  MathSciNet  Google Scholar 

  5. Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7), 1895–1924 (1998)

    Article  Google Scholar 

  6. Evgeniou, T., Pontil, M., Poggio, T.: Regularization networks and support vector machines. Adv. Comput. Math. 13, 1–50 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Faber, G.: Über stetige Funktionen (in German). Math. Annal. 66, 81–94 (1909)

    Article  MATH  MathSciNet  Google Scholar 

  8. Garcke J.: Regression with the optimized combination technique. In: ICML ’06: Proceedings of the 23th International Conference on Machine learning, pp. 321–328. ACM Press, New York (2006)

    Google Scholar 

  9. Fung, G., Mangasarian, O.L.: Proximity support vector machine classifiers. In: Provost, F., Srikant, R. (eds.) Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 77–86 (2001)

    Google Scholar 

  10. Garcke, J.: A dimension adaptive sparse grid combination technique for machine learning. In: Read, W., Larson, J.W., Roberts, A.J. (eds.) Proceedings of the 13th Biennial Computational Techniques and Application Conference, CTAC-2006, vol. 48 of ANZIAM J., pp. C725–C740 (2007)

    Google Scholar 

  11. Garcke, J.: A dimension adaptive combination technique using localized adaptation criteria. In: Bock, H.G., Hoang, X.P., Rannacher, R., Schlöder, J.P. (eds.) Modeling, Simulation and Optimization of Complex Processes, pp. 115–125. Springer, Dordrecht (2012)

    Chapter  Google Scholar 

  12. Garcke, J., Griebel, M.: Data Mining with sparse grids using simplicial basis functions. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2001)

    Google Scholar 

  13. Garcke, J., Griebel, M., Thess, M.: Data mining with sparse grids. Computing 67(3), 225–253 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gerstner, T., Griebel, M.: Numerical integration using sparse grids. Numer. Algorithms 18, 209–232 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Girosi, F.: An equivalence between sparse approximation and support vector machines. Neural Comput. 10, 1455–1480 (1998)

    Article  Google Scholar 

  16. Girosi, F., Jones, M., Poggio, T.: Priors, stabilizers and basis functions: from regularization to radial, tensor and additive splines. AI Memo No. 1430. Artificial Intelligence Laboratory, MIT (1993)

    Google Scholar 

  17. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks architectures. Neural Comput. 7, 219–265 (1995)

    Article  Google Scholar 

  18. Griebel, M.: The combination technique for the sparse grid solution of PDEs on multiprocessor machines. Parallel Process. Lett. 2(1), 61–70 (1992)

    Article  MathSciNet  Google Scholar 

  19. Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problems. In: de Groen, P., Beauwens, R. (eds.) Iterative Methods in Linear Algebra, pp. 263–281. Elsevier, Amsterdam (1992)

    Google Scholar 

  20. Hegland, M.: Adaptive sparse grids. In: Burrage, K., Sidje, R.B. (eds.) Proceedings of 10th Computational Techniques and Application Conference CTAC-2001, vol. 44, pp. C335–C353. (2003)

    Google Scholar 

  21. Hoschek, J., Lasser, D.: Grundlagen der geometrischen Datenverarbeitung. Teubner, Stuttgart (1992). Chapter 9 (in German)

    Book  MATH  Google Scholar 

  22. Kuhn, H.W.: Some combinatorial lemmas in topology. IBM J. Res. Develop. 4, 518–524 (1960)

    Article  MATH  Google Scholar 

  23. Mangasarian, O.L., Musicant, D.R.: Lagrangian Support Vector Machines, Journal of Machine Learning Research 1, 161-177 (2001)

    Google Scholar 

  24. Pflüger D.: Spatial adaptive sparse grids for high-dimensional problems. Dissertation, TU München (2010)

    Google Scholar 

  25. Ripley, B.D.: Neural networks and related methods for classification. J. R. Stat. Soc. B 56(3), 409–456 (1994)

    MATH  MathSciNet  Google Scholar 

  26. Salzberg, S.L.: On comparing classifiers: pitfalls to avoid and a recommended approach. Data Min. Knowl Discov. 1, 317–327 (1997)

    Article  Google Scholar 

  27. Singh, S.: 2d spiral pattern recognition with possible measures. Pattern Recognit. Lett. 19(2), 141–147 (1998)

    Article  MATH  Google Scholar 

  28. Smolyak, S.A.: Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk SSSR. 148, 1042–1043 (1963). Russian, Engl. Transl.: Soviet Math. Dokl. 4, 240–243 (1963)

    Google Scholar 

  29. Tikhonov, A.N., Arsenin, V.A.: Solutions of Ill-Posed Problems. W.H. Winston, Washington, DC (1977)

    MATH  Google Scholar 

  30. Wahba, G.: Spline models for observational data, vol. 59. SIAM, Philadelphia (1990)

    Google Scholar 

  31. Wieland, A.: Spiral data set. CMU Artificial Intelligence repository, 1988

    Google Scholar 

  32. Yserentant, H.: On the multi-level splitting of finite element spaces. Numer. Math. 49, 379–412 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  33. Zenger, C.: Sparse grids. In: Hackbusch, W. (ed.) Parallel Algorithms for Partial Differential Equations, Proceedings of the Sixth GAMM Seminar, Kiel, 1990, Vol. 31 of Notes on Num. Fluid Mech., pp. 241–251. Vieweg-Verlag (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paprotny, A., Thess, M. (2013). Breaking Dimensions: Adaptive Scoring with Sparse Grids. In: Realtime Data Mining. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-01321-3_7

Download citation

Publish with us

Policies and ethics