Skip to main content

Mathematical Modeling of Calcium Dynamics in Airway Smooth Muscle Cells

  • Chapter
  • First Online:

Abstract

Oscillations in the concentration of free cytoplasmic calcium ([Ca2+] i ) play a vital role in the generation and maintenance of force by airway smooth muscle (ASM) cells. Mathematical models have an important role to play in the study of such complex dynamic phenomena, and can be used to construct and test hypotheses for how such oscillations might occur, and how properties such as the oscillation period might be controlled. We briefly discuss the underlying principles of the construction of mathematical models of calcium dynamics, and show how our current model can be used to understand how oscillations of [Ca2+] i in ASM are the result of a complex interplay between inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyRs). Agonist-stimulated production of inositol trisphosphate (IP3) opens IP3R, resulting in the release of Ca2+ from the endoplasmic reticulum (ER). This released Ca2+ stimulates the release of additional Ca2+ from both IP3R and RyR, leading to cycles of Ca2+ release and reuptake from the ER. In the absence of IP3 (no agonist), when the ER is overloaded with Ca2+ these cycles of release and reuptake are mediated primarily by the RyR. Conversely, in the presence of IP3 (with agonist), when the ER is partially depleted of Ca2+, these cycles are mediated primarily by the IP3R. Thus, an understanding of both IP3R and RyR is required for an understanding of how [Ca2+] i oscillations are controlled in ASM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Atri, J. Amundson, D. Clapham and J. Sneyd (1993) A single-pool model for intracellular calcium oscillations and waves in the Xenopus laevis oocyte, Biophys J, 65, 1727–39

    Article  PubMed  CAS  Google Scholar 

  2. Y. Bai, M. Edelmann and M. J. Sanderson (2009) The contribution of inositol 1,4,5-trisphosphate and ryanodine receptors to agonist-induced Ca2+ signaling of airway smooth muscle cells, Am J Physiol Lung Cell Mol Physiol, 297, L347–61

    Article  PubMed  CAS  Google Scholar 

  3. Y. Bai and M. J. Sanderson (2006) Airway smooth muscle relaxation results from a reduction in the frequency of Ca2+ oscillations induced by a cAMP-mediated inhibition of the IP i 3 receptor, Respir Res, 7, 34

    Article  PubMed  Google Scholar 

  4. H. Cheng, W. J. Lederer and M. B. Cannell (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle, Science, 262, 740–4

    Article  PubMed  CAS  Google Scholar 

  5. G. W. De Young and J. Keizer (1992) A single pool IP3-receptor based model for agonist stimulated Ca2+ oscillations, Proc Natl Acad Sci U S A, 89, 9895–9899

    Article  PubMed  Google Scholar 

  6. A. Fajmut, M. Brumen and S. Schuster (2005) Theoretical model of the interactions between Ca2+, calmodulin and myosin light chain kinase, FEBS Lett, 579, 4361–6

    Article  PubMed  CAS  Google Scholar 

  7. M. Falcke (2003) On the role of stochastic channel behavior in intracellular Ca2+ dynamics, Biophys J, 84, 42–56

    Article  PubMed  CAS  Google Scholar 

  8. M. Falcke (2004) Reading the patterns in living cells - the physics of Ca2+ signaling, Advances in Physics, 53, 255–440

    Article  CAS  Google Scholar 

  9. D. Friel (1995) [Ca2+] i oscillations in sympathetic neurons: an experimental test of a theoretical model, Biophys J, 68, 1752–1766

    Article  PubMed  CAS  Google Scholar 

  10. E. Gin, M. Falcke, L. E. Wagner, D. I. Yule and J. Sneyd (2009) Markov chain Monte Carlo fitting of single-channel data from inositol trisphosphate receptors, J Theor Biol, 257, 460–74

    Article  PubMed  CAS  Google Scholar 

  11. C. M. Hai and R. A. Murphy (1988) Cross-bridge phosphorylation and regulation of latch state in smooth muscle, Am J Physiol, 254, C99–106

    PubMed  CAS  Google Scholar 

  12. A. F. Huxley (1957) Muscle structure and theories of contraction, Progress in Biophysics, 7, 255–318

    CAS  Google Scholar 

  13. J. P. Keener and J. Sneyd (2009) Mathematical Physiology, Second Edition, Springer-Verlag, New York

    Google Scholar 

  14. A. P. LeBeau, D. I. Yule, G. E. Groblewski and J. Sneyd (1999) Agonist-dependent phosphorylation of the inositol 1,4,5-trisphosphate receptor: A possible mechanism for agonist-specific calcium oscillations in pancreatic acinar cells, J Gen Physiol, 113, 851–72

    Article  PubMed  CAS  Google Scholar 

  15. M. Marhl, D. Noble and E. Roux (2006) Modeling of molecular and cellular mechanisms involved in Ca2+ signal encoding in airway myocytes, Cell Biochem Biophys, 46, 285–302

    Article  PubMed  CAS  Google Scholar 

  16. P. Mbikou, A. Fajmut, M. Brumen and E. Roux (2006) Theoretical and experimental investigation of calcium-contraction coupling in airway smooth muscle, Cell Biochem Biophys, 46, 233–52

    Article  PubMed  CAS  Google Scholar 

  17. O. Mignen, J. L. Thompson and T. J. Shuttleworth (2001) Reciprocal regulation of capacitative and arachidonate-regulated noncapacitative Ca2+ entry pathways, J Biol Chem, 276, 35676–83

    Article  PubMed  CAS  Google Scholar 

  18. C. M. Pabelick, Y. S. Prakash, M. S. Kannan and G. C. Sieck (1999) Spatial and temporal aspects of calcium sparks in porcine tracheal smooth muscle cells, Am J Physiol, 277, L1018–25

    PubMed  CAS  Google Scholar 

  19. J. F. Perez and M. J. Sanderson (2005) The Frequency of Calcium Oscillations Induced by 5-HT, ACH, and KCl Determine the Contraction of Smooth Muscle Cells of Intrapulmonary Bronchioles, J Gen Physiol, 125, 535–53

    CAS  Google Scholar 

  20. J. F. Perez-Zoghbi, Y. Bai and M. J. Sanderson (2010) Nitric oxide induces airway smooth muscle cell relaxation by decreasing the frequency of agonist-induced Ca2+ oscillations, J Gen Physiol, 135, 247–59

    Article  PubMed  CAS  Google Scholar 

  21. Y. S. Prakash, M. S. Kannan and G. C. Sieck (1997) Regulation of intracellular calcium oscillations in porcine tracheal smooth muscle cells, Am J Physiol, 272, C966–75

    PubMed  CAS  Google Scholar 

  22. Y. S. Prakash, C. M. Pabelick, M. S. Kannan and G. C. Sieck (2000) Spatial and temporal aspects of ACh-induced [Ca2+] i oscillations in porcine tracheal smooth muscle, Cell Calcium, 27, 153–62

    Article  PubMed  CAS  Google Scholar 

  23. A. R. Ressmeyer, Y. Bai, P. Delmotte, K. F. Uy, P. Thistlethwaite, A. Fraire, O. Sato, M. Ikebe and M. J. Sanderson (2010) Human airway contraction and formoterol-induced relaxation is determined by Ca2+ oscillations and Ca2+ sensitivity, Am J Respir Cell Mol Biol, 43, 179–91

    Article  PubMed  CAS  Google Scholar 

  24. E. Roux, P. J. Noble, D. Noble and M. Marhl (2006) Modelling of calcium handling in airway myocytes, Prog Biophys Mol Biol, 90, 64–87

    Article  PubMed  CAS  Google Scholar 

  25. M. J. Sanderson, Y. Bai and J. Perez-Zoghbi (2010) Ca2+ oscillations regulate contraction of intrapulmonary smooth muscle cells, Adv Exp Med Biol, 661, 77–96

    Article  PubMed  CAS  Google Scholar 

  26. M. J. Sanderson, P. Delmotte, Y. Bai and J. F. Perez-Zogbhi (2008) Regulation of airway smooth muscle cell contractility by Ca2+ signaling and sensitivity, Proc Am Thorac Soc, 5, 23–31

    Article  PubMed  CAS  Google Scholar 

  27. T. J. Shuttleworth, J. L. Thompson and O. Mignen (2007) STIM1 and the noncapacitative ARC channels, Cell Calcium, 42, 183–91

    Article  PubMed  CAS  Google Scholar 

  28. I. Siekmann, L. E. Wagner, 2nd, D. Yule, C. Fox, D. Bryant, E. J. Crampin and J. Sneyd (2011) MCMC estimation of Markov models for ion channels, Biophys J, 100, 1919–29

    Article  PubMed  CAS  Google Scholar 

  29. J. Sneyd and J. F. Dufour (2002) A dynamic model of the type-2 inositol trisphosphate receptor, Proc Natl Acad Sci U S A, 99, 2398–403

    Article  PubMed  CAS  Google Scholar 

  30. J. Sneyd, K. Tsaneva-Atanasova, V. Reznikov, Y. Bai, M. J. Sanderson and D. I. Yule (2006) A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations, Proc Natl Acad Sci U S A, 103, 1675–80

    Article  PubMed  CAS  Google Scholar 

  31. K. Thurley, A. Skupin, R. Thul and M. Falcke (2012) Fundamental properties of Ca2+ signals, Biochim Biophys Acta, 1820, 1185–94

    Article  PubMed  CAS  Google Scholar 

  32. K. Thurley, I. F. Smith, S. C. Tovey, C. W. Taylor, I. Parker and M. Falcke (2011) Timescales of IP3-evoked Ca2+ spikes emerge from Ca2+ puffs only at the cellular level, Biophys J, 101, 2638–44

    Article  PubMed  CAS  Google Scholar 

  33. I. Wang, A. Z. Politi, N. Tania, Y. Bai, M. J. Sanderson and J. Sneyd (2008) A mathematical model of airway and pulmonary arteriole smooth muscle, Biophys J, 94, 2053–64

    Article  PubMed  CAS  Google Scholar 

  34. I. Y. Wang, Y. Bai, M. J. Sanderson and J. Sneyd (2010) A mathematical analysis of agonist- and KCl-induced Ca2+ oscillations in mouse airway smooth muscle cells, Biophys J, 98, 1170–81

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grant R01 HL103405 and by the University of Auckland, New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Sneyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sneyd, J., Cao, P., Tan, X., Sanderson, M.J. (2014). Mathematical Modeling of Calcium Dynamics in Airway Smooth Muscle Cells. In: Wang, YX. (eds) Calcium Signaling In Airway Smooth Muscle Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-01312-1_19

Download citation

Publish with us

Policies and ethics