Skip to main content

The Renormalisation Group

  • Chapter
  • First Online:
Asymptotic Safety and Black Holes

Part of the book series: Springer Theses ((Springer Theses))

  • 592 Accesses

Abstract

Gravity is perhaps the most intriguing force in nature. Unlike the other fundamental interactions, gravity is embodied in the curvature of the very arena in which all natural processes occur. It is the presence of matter in the universe that tells the geometry of space-time how it should curve and warp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    for simplicity we assume there are no marginal directions.

References

  1. Kadanoff, L. (1966). Scaling laws for Ising models near T(c). Physics, 2, 263–272.

    Google Scholar 

  2. Wilson, K. G., & Kogut, J. B. (1974). The renormalization group and the epsilon expansion. Physics Report, 12, 75–200.

    Article  ADS  Google Scholar 

  3. Wilson, K. (1975). The renormalization group: Critical phenomena and the kondo problem. Reviews of Modern Physics, 47(4), 773–840.

    Article  MathSciNet  ADS  Google Scholar 

  4. Weinberg, S. (1979). Ultraviolet divergences in quantum theories of gravity. In S. W. Hawking & W. Israel (Eds.), General Relativity.

    Google Scholar 

  5. Niedermaier, M., & Reuter, M. (2006). The asymptotic safety scenario in quantum gravity. Living Reviews in Relativity, 9, 5.

    Article  ADS  Google Scholar 

  6. Niedermaier, M. (2007). The asymptotic safety scenario in quantum gravity: An introduction. Classical and Quantum Gravity, 24, R171–230.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Percacci, R. (2007). Asymptotic Safety. In D. Oriti (Ed.), Approaches to quantum gravity: towards a new understanding of space, time and matter. Cambridge: University Press.

    Google Scholar 

  8. Litim, D. F. (2008). Fixed points of quantum gravity and the renormalisation group. In Proceedings of Workshop on from Quantum to Emergent Gravity: Theory and phenomenology.

    Google Scholar 

  9. Reuter, M. & Saueressig, F. (2007). Functional renormalization group equations, asymptotic safety, and quantum Einstein gravity.

    Google Scholar 

  10. Litim, D. F. (2004). Fixed points of quantum gravity. Physical Review Letters, 92, 201301.

    Article  MathSciNet  ADS  Google Scholar 

  11. Litim, D. F. (2001). Optimized renormalization group flows. Physical Review, D64, 105007.

    ADS  Google Scholar 

  12. Litim, D. F. (2006). On fixed points of quantum gravity. AIP Conference Proceedings, 841, 322–329.

    Article  MathSciNet  ADS  Google Scholar 

  13. Gastmans, R., Kallosh, R., & Truffin, C. (1978). Quantum gravity near two-dimensions. Nuclear Physics, B133, 417.

    MathSciNet  ADS  Google Scholar 

  14. Kawai, H., & Ninomiya, M. (1990). Renormalization group and quantum gravity. Nuclear Physics, B336, 115.

    MathSciNet  ADS  Google Scholar 

  15. Kawai, H., Kitazawa, Y., & Ninomiya, M. (1996). Renormalizability of quantum gravity near two-dimensions. Nuclear Physics, B467, 313–331.

    MathSciNet  ADS  Google Scholar 

  16. Smolin, L. (1982). A fixed point for quantum gravity. Nuclear Physics, B208, 439.

    ADS  Google Scholar 

  17. Tomboulis, E. (1977). 1/N expansion and renormalization in quantum gravity. Physics Letters, B70, 361.

    ADS  Google Scholar 

  18. Wetterich, C. (1993). Exact evolution equation for the effective potential. Physics Letters, B301, 90–94.

    ADS  Google Scholar 

  19. Reuter, M. (1998). Nonperturbative evolution equation for quantum gravity. Physical Review, D57, 971–985.

    MathSciNet  ADS  Google Scholar 

  20. Lauscher, O., & Reuter, M. (2002c). Ultraviolet fixed point and generalized flow equation of quantum gravity. Physical Review, D65, 025013.

    MathSciNet  ADS  Google Scholar 

  21. Souma, W. (1999). Non-trivial ultraviolet fixed point in quantum gravity. Progress of Theoretical Physics, 102, 181–195.

    Article  MathSciNet  ADS  Google Scholar 

  22. Reuter, M., & Saueressig, F. (2002). Renormalization group flow of quantum gravity in the Einstein-Hilbert truncation. Physical Review, D65, 065016.

    MathSciNet  ADS  Google Scholar 

  23. Fischer, P., & Litim, D. F. (2006a). Fixed points of quantum gravity in extra dimensions. Physics Letters, B638, 497–502.

    MathSciNet  ADS  Google Scholar 

  24. Fischer, P., & Litim, D. F. (2006b). Fixed points of quantum gravity in higher dimensions. AIP Conference Proceedings, 861, 336–343.

    Article  ADS  Google Scholar 

  25. Lauscher, O., & Reuter, M. (2002b). Is quantum Einstein gravity nonperturbatively renormalizable? Classical and Quantum Gravity, 19, 483–492.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Lauscher, O., & Reuter, M. (2002a). Flow equation of quantum Einstein gravity in a higher- derivative truncation. Physical Review, D66, 025026.

    MathSciNet  ADS  Google Scholar 

  27. Codello, A., & Percacci, R. (2006). Fixed points of higher derivative gravity. Physical Review Letters, 97, 221301.

    Article  MathSciNet  ADS  Google Scholar 

  28. Benedetti, D., Machado, P. F., & Saueressig, F. (2009a). Asymptotic safety in higher-derivative gravity. Modern Physics Letters, A24, 2233–2241.

    Article  ADS  Google Scholar 

  29. Benedetti, D., Machado, P. F., & Saueressig, F. (2009b). Four-derivative interactions in asymptotically safe gravity.

    Google Scholar 

  30. Benedetti, D., Machado, P. F., & Saueressig, F. (2010). Taming perturbative divergences in asymptotically safe gravity. Nuclear Physics, B824, 168–191.

    MathSciNet  ADS  Google Scholar 

  31. Saueressig, F., Groh, K., Rechenberger, S., and Zanusso, O. (2011). Highederivative gravity from the universal renormalization group machine. PoS, EPS-HEP2011 (p. 124).

    Google Scholar 

  32. Eichhorn, A., & Gies, H. (2010). Ghost anomalous dimension in asymptotically safe quantum gravity. Phys. Rev., D81, 104010.

    ADS  Google Scholar 

  33. Eichhorn, A., Gies, H., & Scherer, M. M. (2009). Asymptotically free scalar curvature-ghost coupling in Quantum Einstein Gravity. Phys. Rev., D80, 104003.

    ADS  Google Scholar 

  34. Groh, K., & Saueressig, F. (2010). Ghost wave-function renormalization in Asymptotically Safe Quantum Gravity. J. Phys., A43, 365403.

    MathSciNet  Google Scholar 

  35. Bonanno, A., & Reuter, M. (2005a). Proper time flow equation for gravity. JHEP, 02, 035.

    Article  MathSciNet  ADS  Google Scholar 

  36. Bonanno, A., & Reuter, M. (2005b). Proper-time regulators and RG flow in QEG. AIP Conf. Proc., 751, 162–164.

    Article  ADS  Google Scholar 

  37. Daum, J.-E., & Reuter, M. (2012). Renormalization group flow of the holst action. Physical Letters, B710:215–218 (5 pages, 1 figure).

    Google Scholar 

  38. Daum, J.-E., & Reuter, M. (2011a). Running immirzi parameter and asymptotic safety. Germany: University of Mainz.

    Google Scholar 

  39. Harst, U., & Reuter, M. (2012). The ’Tetrad only’ theory space: nonperturbative renormalization flow and asymptotic safety. Journal of High Energy Physics, 1205, 45 (10 figures).

    Google Scholar 

  40. Manrique, E., Reuter, M., & Saueressig, F. (2010b). Matter induced bimetric actions for gravity. Annals of Physics, 326(2), 440–462.

    Google Scholar 

  41. Manrique, E., Reuter, M., & Saueressig, F. (2010a). Bimetric renormalization group flows in quantum Einstein gravity. Annals of Physics 326:463–485.

    Google Scholar 

  42. Dou, D., & Percacci, R. (1998). The running gravitational couplings. Classical Quantum Gravity, 15, 3449–3468.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Percacci, R., & Perini, D. (2003a). Asymptotic safety of gravity coupled to matter. Physical Review, D68, 044018.

    ADS  Google Scholar 

  44. Percacci, R., & Perini, D. (2003b). Constraints on matter from asymptotic safety. Physical Review, D67, 081503.

    ADS  Google Scholar 

  45. Daum, J.-E., Harst, U., & Reuter, M. (2010b). Running gauge coupling in asymptotically safe quantum gravity. Journal of High Energy Physics, 1001, 084.

    Article  ADS  Google Scholar 

  46. Daum, J.-E., Harst, U., & Reuter, M. (2010a). Non-perturbative QEG corrections to the Yang-Mills beta function. General Relativity and Gravitation.

    Google Scholar 

  47. Eichhorn, A. (2012). Quantum-gravity-induced matter self-interactions in the asymptotic-safety scenario. Physical Review D86:10.

    Google Scholar 

  48. Eichhorn, A., & Gies, H. (2011). Light fermions in quantum gravity. New Journal of Physics, 13, 125012.

    Article  ADS  Google Scholar 

  49. Harst, U. & Reuter, M. (2011). QED coupled to QEG. Germany: University of Mainz.

    Google Scholar 

  50. Narain, G., & Percacci, R. (2010). Renormalization group flow in scalar-tensor theories. I Classical Quantum Gravity, 27, 075001.

    Article  MathSciNet  ADS  Google Scholar 

  51. Narain, G., & Rahmede, C. (2010). Renormalization group flow in scalar-tensor theories. II Classical Quantum Gravity, 27, 075002.

    Article  MathSciNet  ADS  Google Scholar 

  52. Vacca, G., & Zanusso, O. (2010). Asymptotic safety in einstein gravity and scalar-fermion matter. Physical Review Letters, 105, 231601.

    Article  ADS  Google Scholar 

  53. Codello, A., Percacci, R., & Rahmede, C. (2008). Ultraviolet properties of f(R)-gravity. International Journal of Modern Physics, A23, 143–150.

    Article  ADS  Google Scholar 

  54. Machado, P. F., & Saueressig, F. (2008). On the renormalization group flow of f(R)-gravity. Physical Review, D77, 124045.

    MathSciNet  ADS  Google Scholar 

  55. Codello, A., Percacci, R., & Rahmede, C. (2009). Investigating the ultraviolet properties of gravity with a wilsonian renormalization group equation. Annals of Physics, 324, 414–469.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Reuter, M., & Weyer, H. (2009a). Background independence and asymptotic safety in conformally reduced gravity. Physical Review, D79, 105005.

    ADS  Google Scholar 

  57. Reuter, M., & Weyer, H. (2009b). Conformal sector of quantum Einstein gravity in the local potential approximation: Non-Gaussian fixed point and a phase of diffeomorphism invariance. Physical Review, D80, 025001.

    ADS  Google Scholar 

  58. Reuter, M., & Weyer, H. (2009c). The role of Background independence for asymptotic safety in quantum Einstein gravity. General Relativity and Gravitation, 41, 983–1011.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. Daum, J.-E., & Reuter, M. (2009). Effective potential of the conformal factor: gravitational average action and dynamical triangulations. Advanced Science Letters, 2, 255–260.

    Article  Google Scholar 

  60. Machado, P. F., & Percacci, R. (2009). Conformally reduced quantum gravity revisited. Physical Review, D80, 024020.

    ADS  Google Scholar 

  61. Daum, J.-E. and Reuter, M. (2011b). The Effective Potential of the Conformal Factor in Quantum Einstein Gravity. PoS, CLAQG08 (p. 013).

    Google Scholar 

  62. Demmel, M., Saueressig, F., and Zanusso, O. (2012). Fixed-Functionals of three-dimensional Quantum Einstein Gravity.

    Google Scholar 

  63. Percacci, R. (2011b). Renormalization group flow of Weyl invariant dilaton gravity. New Journal of Physics, 13:125013 (5 pages).

    Google Scholar 

  64. Percacci, R. (2006). Further evidence for a gravitational fixed point. Phys. Rev., D73, 041501.

    MathSciNet  ADS  Google Scholar 

  65. Donkin, I. & Pawlowski, J. M. (2012). The phase diagram of quantum gravity from diffeomorphism-invariant RG-flows (p. 23) (13 figures).

    Google Scholar 

  66. Litim, D. F., Percacci, R., & Rachwal, L. (2012). Scale-dependent Planck mass and Higgs VEV from holography and functional renormalization. Physical Letters B710:472–477 (6 pages, 1 figure).

    Google Scholar 

  67. Litim, D. & Satz, A. (2012). Limit cycles and quantum gravity. College Park: University of Maryland.

    Google Scholar 

  68. Christiansen, N., Litim, D. F., Pawlowski, J. M., & Rodigast, A. (2012). Fixed points and infrared completion of quantum gravity.

    Google Scholar 

  69. Forgacs, P., & Niedermaier, M. (2002). A Fixed point for truncated quantum Einstein gravity. Journal of High Energy Physics, 12, 9.

    Google Scholar 

  70. Niedermaier, M., & Samtleben, H. (2000). An algebraic bootstrap for dimensionally reduced quantum gravity. Nuclear Physics, B579, 437–491.

    MathSciNet  ADS  Google Scholar 

  71. Niedermaier, M. (2003). Dimensionally reduced gravity theories are asymptotically safe. Nuclear Physics, B673, 131–169.

    MathSciNet  ADS  Google Scholar 

  72. Niedermaier, M. (2002). On the renormalization of truncated quantum Einstein gravity. Journal of High Energy Physics, 0212, 066.

    Article  MathSciNet  ADS  Google Scholar 

  73. Niedermaier, M. (2010). Gravitational fixed points and asymptotic safety from perturbation theory. Nuclear Physics, B833, 226–270.

    MathSciNet  ADS  Google Scholar 

  74. Niedermaier, M. (2011). Can a nontrivial gravitational fixed point be identified in perturbation theory? PoS. Classical Quantum Gravity, 08, 005.

    Google Scholar 

  75. Niedermaier, M. R. (2009). Gravitational Fixed Points from perturbation theory. Physical Review Letters, 103, 101303.

    Article  ADS  Google Scholar 

  76. Weinberg, S. (2010). Asymptotically safe inflation. Physical Review, D81, 083535.

    ADS  Google Scholar 

  77. Bonanno, A., & Reuter, M. (2002). Cosmology with self-adjusting vacuum energy density from a renormalization group fixed point. Physical Letters, B527, 9–17.

    ADS  Google Scholar 

  78. Bonanno, A. & Reuter, M. (2002). Cosmology of the planck era from a renormalization group for quantum gravity. Physical Review D 65, 043508.

    Google Scholar 

  79. Bonanno, A., Contillo, A., & Percacci, R. (2011). Inflationary solutions in asymptotically safe f(R) theories. Classical Quantum Gravity, 28, 145026.

    Article  MathSciNet  ADS  Google Scholar 

  80. Bonanno, A. & Reuter, M. (2010). Entropy Production during Asymptotically Safe Inflation 13(1):274–292.

    Google Scholar 

  81. Bonanno, A. (2011a). Astrophysical implications of the asymptotic safety scenario in quantum gravity. Classical Quantum Gravity (Pos), 08, 008.

    Google Scholar 

  82. Contillo, A. (2011a). Evolution of cosmological perturbations in an RG-driven inflationary scenario. Physical Review, D83, 085016.

    ADS  Google Scholar 

  83. Contillo, A. (2011b). Inflation in asymptotically safe f(R) theory. Journal of Physics: Conference Series, 283, 012009.

    Article  ADS  Google Scholar 

  84. Hindmarsh, M., Litim, D., & Rahmede, C. (2011). Asymptotically safe cosmology. Journal of Cosmology and Astroparticle Physics, 1107, 019.

    Article  ADS  Google Scholar 

  85. Hong, S. E., Lee, Y. J., & Zoe, H. (2011). The Possibility of Inflation in Asymptotically Safe Gravity 36(1–3), 178–186.

    Google Scholar 

  86. Koch, B., & Ramirez, I. (2011). Exact renormalization group with optimal scale and its application to cosmology. Classical Quantum Gravity, 28, 055008.

    Article  MathSciNet  ADS  Google Scholar 

  87. Tye, S. H. H., & Xu, J. (2010). Comment on asymptotically safe inflation. Physical Review, D82, 127302.

    ADS  Google Scholar 

  88. Bonanno, A., & Reuter, M. (2000). Renormalization group improved black hole spacetimes. Physical Review, D62, 043008.

    ADS  Google Scholar 

  89. Bonanno, A., & Reuter, M. (2006). Spacetime structure of an evaporating black hole in quantum gravity. Physical Review, D73, 083005.

    MathSciNet  ADS  Google Scholar 

  90. Reuter, M., & Tuiran, E. (2011). Quantum gravity effects in the kerr spacetime. Physical Review D 83:044041.

    Google Scholar 

  91. Falls, K., Litim, D. F., & Raghuraman, A. (2012b). Black holes and asymptotically safe gravity. International Journal of Modern Physics, A27, 1250019.

    Article  MathSciNet  ADS  Google Scholar 

  92. Cai, Y.-F., & Easson, D. A. (2010). Black holes in an asymptotically safe gravity theory with higher derivatives. Journal of Cosmology and Astroparticle Physics 1009:002.

    Google Scholar 

  93. Burschil, T., & Koch, B. (2010). Renormalization group improved black hole space-time in large extra dimensions. Zh.Eksp. Teor. Fiz. 92:219–225 2010. Jounal of Experimental and Theoretical Physics Letters, 92, 193–199.

    Article  ADS  Google Scholar 

  94. Gies, H. (2006). Introduction to the functional RG and applications to gauge theories.

    Google Scholar 

  95. Berges, J., Tetradis, N., & Wetterich, C. (2002). Nonperturbative renormalization flow in quantum field theory and statistical physics. Physical Report, 363, 223–386.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  96. Pawlowski, J. M. (2007). Aspects of the functional renormalisation group. Annals of Physics, 322, 2831–2915.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  97. Polonyi, J. (2003). Lectures on the functional renormalization group method. The Central European Journal of Physics, 1, 1–71.

    Article  ADS  Google Scholar 

  98. Rosten, O. J. (2012). Fundamentals of the exact renormalization group. Physical Report, 511, 177–272.

    Article  MathSciNet  ADS  Google Scholar 

  99. Wetterich, C. (1991). Average action and the renormalization group equations. Nuclear Physics, B352, 529–584.

    MathSciNet  ADS  Google Scholar 

  100. Litim, D. F. (2000). Optimization of the exact renormalization group. Physical Letters, B486, 92–99.

    ADS  Google Scholar 

  101. Stevenson, P. M. (1981). Optimized perturbation theory. Physical Review Letters, D23, 2916.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Falls .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Falls, K. (2013). The Renormalisation Group. In: Asymptotic Safety and Black Holes. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01294-0_2

Download citation

Publish with us

Policies and ethics