Skip to main content

Basic Properties of Control Systems

  • Chapter
  • First Online:
Book cover Invariance Entropy for Deterministic Control Systems

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2089))

  • 1197 Accesses

Abstract

This introductory chapter provides the necessary background on control systems that we need for the development of the entropy theory. In Sect. 1.1, we give the definition of a control system which is basically the one from Sontag’s book (Mathematical Control Theory. Deterministic Finite-Dimensional Systems, 2nd edn., vol. 6, 1998). We also introduce particular classes of (time-invariant) systems, namely topological, linear, and smooth systems. Section 1.2 introduces the subclass of smooth systems which our main focus is on, the class of smooth systems given by differential equations. The third section serves for the introduction of several useful control-theoretic notions. In Sect.1.4, we prove elementary properties of the control flow associated with a control-affine system. Moreover, we establish the notions of control and chain control sets, and we give the proofs for some elementary properties of these objects. Most of this material stems from the book of Colonius and Kliemann (The Dynamics of Control, 2000). Finally, in Sect. 1.5, the linearization of a smooth system given by differential equations along a fixed trajectory and related notions are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Usually, by a flow one understands a continuous-time dynamical system. Essentially, we also use the terminology in this way, but we make an exception here.

  2. 2.

    Throughout the book, the abbreviation “a.e.” stands for “(Lebesgue) almost everywhere”.

  3. 3.

    Recall: A subset \(\mathcal{F}\) of the function space \({\mathcal{C}}^{0}(X,Y )\) of continuous maps from a compact topological space X into a metric space Y is relatively compact if and only if \(\mathcal{F}\) is equicontinuous and each of the sets \(\{f(x)\}_{f\in \mathcal{F}}\), x ∈ X, has a compact closure.

  4. 4.

    Here we mean that z is locally absolutely continuous as a curve in T M, cf. Sect. A.3.

  5. 5.

    By \(\|\cdot \|_{[0,\tau ]}\) we denote the L -norm on \({L}^{\infty }([0,\tau ], {\mathbb{R}}^{m})\).

References

  1. Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Trans. Am. Math. Soc. 114(2), 309–319 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albertini, F., Sontag, E.D.: Some connections between chaotic dynamical systems and control systems. Report SYCON-90-13, Rutgers Center for Systems and Control, New Brunswick (1990)

    Google Scholar 

  3. Albertini, F., Sontag, E.D.: Discrete-time transitivity and accessibility: Analytic systems. SIAM J. Control Optim. 31(6), 1599–1622 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, L.: Random Dynamical Systems. Springer Monographs in Mathematics. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  5. Aulbach, B., Wanner, T.: Integral manifolds for Carathéodory type differential equations in Banach spaces. In: Aulbach, B., Colonius, F. (eds.) Six Lectures on Dynamical Systems (Augsburg, 1994), pp. 45–119. World Scientific, River Edge (1996)

    Chapter  Google Scholar 

  6. Bachman, G., Narici, L.: Functional Analysis. Academic, New York (1966)

    MATH  Google Scholar 

  7. Baillieul, J.: Feedback designs in information-based control. In: Stochastic Theory and Control (Lawrence, KS, 2001). Lecture Notes in Control and Information Scienes, vol. 280, pp. 35–57. Springer, Berlin (2002)

    Google Scholar 

  8. Boichenko, V.A., Leonov, G.A.: The direct Lyapunov method in estimates for topological entropy. J. Math. Sci. (New York) 91(6), 3370–3379 (1998). Translation from Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 231 (1995), Issled. po Topol. 8, 62–75, 323 (1996)

    Google Scholar 

  9. Boichenko, V.A., Leonov, G.A., Reitmann, V.: Dimension Theory for Ordinary Differential Equations. Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 141. B.G. Teubner, Stuttgart (2005)

    Google Scholar 

  10. Bowen, R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc. 153, 401–414 (1971); Errata, Trans. Am. Math. Soc. 181, 509–510 (1973)

    Google Scholar 

  11. Bowen, R.: Entropy-expansive maps. Trans. Am. Math. Soc. 164, 323–331 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bowen, R.: Topological entropy for noncompact sets. Trans. Am. Math. Soc. 184, 125–136 (1973)

    Article  MathSciNet  Google Scholar 

  13. Bowen, R.: Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, 2nd revised edn. Lecture Notes in Mathematics, vol. 470. Springer, Berlin (2008)

    Google Scholar 

  14. Bowen, R., Ruelle, D.: The ergodic theory of axiom A flows. Invent. Math. 29(3), 181–202 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems. Texts in Applied Mathematics, vol. 49. Springer, New York (2005)

    Google Scholar 

  16. Catalan, T., Tahzibi, A.: A lower bound for topological entropy of generic non Anosov symplectic diffeomorphisms. Preprint, arXiv:1011.2441 [math.DS] (2010)

    Google Scholar 

  17. Chicone, C.: Ordinary Differential Equations with Applications, 2nd edn. Texts in Applied Mathematics, vol. 34. Springer, New York (2006)

    Google Scholar 

  18. Cohn, D.: Measure Theory. Birkhäuser, Boston (1980)

    Book  MATH  Google Scholar 

  19. Colonius, F.: Minimal data rates and invariance entropy. In: Electronic Proceedings of the Conference on Mathematical Theory of Networks and Systems (MTNS), Budapest, 5–9 July 2010

    Google Scholar 

  20. Colonius, F.: Minimal bit rates and entropy for stabilization. SIAM J. Control Optim. 50, 2988–3010 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Colonius, F., Du, W.: Hyperbolic control sets and chain control sets. J. Dyn. Control Syst. 7(1), 49–59 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Colonius, F., Helmke, U.: Entropy of controlled-invariant subspaces. Z. Angew. Math. Mech. (2013) (to appear)

    Google Scholar 

  23. Colonius, F., Kawan, C.: Invariance entropy for control systems. SIAM J. Control Optim. 48(3), 1701–1721 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Colonius, F., Kawan, C.: Invariance entropy for outputs. Math. Control Signals Syst. 22(3), 203–227 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Colonius, F., Kliemann, W.: The Dynamics of Control. Birkhäuser, Boston (2000)

    Book  Google Scholar 

  26. Colonius, F., Spadini, M.: Uniqueness of local control sets. J. Dyn. Control Syst. 9(4), 513–530 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Colonius, F., Fukuoka, R., Santana, A.: Invariance entropy for topological semigroup actions. Proc. Am. Math. Soc. (2013) (in press)

    Google Scholar 

  28. Colonius, F., Kawan, C., Nair, G.N.: A note on topological feedback entropy and invariance entropy. Syst. Control Lett. 62, 377–381 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Conley, C.: Isolated Invariant Sets and the Morse Index. Regional Conference Series in Mathematics, vol. 38. American Mathematical Society, Providence (1978)

    Google Scholar 

  30. Coron, J.-M.: Linearized control systems and applications to smooth stabilization. SIAM J. Control Optim. 32(2), 358–386 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Dai, X., Zhou, Z., Geng, X.: Some relations between Hausdorff-dimensions and entropies. Sci. China Ser. A 41(10), 1068–1075 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Da Silva, A.: Invariance entropy for random control systems. Math. Control Signals Syst. (2013). doi:10.1007/s00498-013-0111-9

    Google Scholar 

  33. Delchamps, D.: Stabilizing a linear system with quantized state feedback. IEEE Trans. Autom. Control 35(8), 916–924 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. Delvenne, J.-C.: An optimal quantized feedback strategy for scalar linear systems. IEEE Trans. Autom. Control 51(2), 298–303 (2006)

    Article  MathSciNet  Google Scholar 

  35. Demers, M.F., Young, L.-S.: Escape rates and conditionally invariant measures. Nonlinearity 19, 377–379 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. De Persis, C.: n-bit stabilization of n-dimensional nonlinear systems in feedforward form. IEEE Trans. Autom. Control 50(3), 299–311 (2005)

    Google Scholar 

  37. Dinaburg, E.I.: A connection between various entropy characteristics of dynamical systems (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 35, 324–366 (1971)

    MathSciNet  MATH  Google Scholar 

  38. Douady, A., Oesterlé, J.: Dimension de Hausdorff des attracteurs (French). C. R. Acad. Sci. Paris Ser. A–B 290(24), A1135–A1138 (1980)

    Google Scholar 

  39. Downarowicz, T.: Entropy in Dynamical Systems. New Mathematical Monographs, vol. 18. Cambridge University Press, Cambridge (2011)

    Google Scholar 

  40. Dunford, N., Schwartz, J.T.: Linear Operators, Part I: General Theory. With the assistance of William G. Bade and Robert G. Bartle. Wiley, New York (1988). Reprint of the 1958 original. Wiley Classics Library. A Wiley-Interscience Publication

    Google Scholar 

  41. Fagnani, F., Zampieri, S.A.: A symbolic approach to performance analysis of quantized feedback systems: The scalar case. SIAM J. Control Optim. 44(3), 816–866 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer, New York (1969)

    Google Scholar 

  43. Ferraiol, T., Patrão, M., Seco, L.: Jordan decomposition and dynamics on flag manifolds. Discrete Contin. Dyn. Syst. 26(3), 923–947 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Franz, A.: Hausdorff dimension estimates for invariant sets with an equivariant tangent bundle splitting. Nonlinearity 11(4), 1063–1074 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  45. Fried, D., Shub, M.: Entropy, linearity and chain-recurrence. Inst. Hautes Études Sci. Publ. Math. No. 50, 203–214 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  46. Froyland, G., Stancevic, O.: Escape rates and Perron-Frobenius operators: Open and closed dynamical systems. Discrete Contin. Dyn. Syst. Ser. B 14, 457–472 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. Froyland, G., Junge, O., Ochs, G.: Rigorous computation of topological entropy with respect to a finite partition. Phys. D 154(1–2), 68–84 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry. Universitext. Springer, Berlin (1987)

    Book  MATH  Google Scholar 

  49. Gelfert, K.: Abschätzungen der kapazitiven Dimension und der topologischen Entropie für partiell volumenexpandierende sowie volumenkontrahierende Systeme auf Mannigfaltigkeiten. Dissertation, Technical University of Dresden (2001)

    Google Scholar 

  50. Gelfert, K.: Lower bounds for the topological entropy. Discrete Contin. Dyn. Syst. 12(3), 555–565 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  51. Goodwyn, L.W.: The product theorem for topological entropy. Trans. Am. Math. Soc. 158, 445–452 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  52. Grasse, K.A., Sussmann, H.J.: Global controllability by nice controls. In: Nonlinear Controllability and Optimal Control. Monographs and Textbooks in Pure and Applied Mathematics, vol. 133, pp. 33–79. Dekker, New York (1990)

    Google Scholar 

  53. Grüne, L.: A uniform exponential spectrum for linear flows on vector bundles. J. Dyn. Differ. Equ. 12(2), 435–448 (2000)

    Article  MATH  Google Scholar 

  54. Gu, X.: An upper bound for the Hausdorff dimension of a hyperbolic set. Nonlinearity 4(3), 927–934 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  55. Gundlach, V.M., Kifer, Y.: Random hyperbolic systems. In: Stochastic Dynamics (Bremen, 1997), pp. 117–145. Springer, New York (1999)

    Google Scholar 

  56. Hagihara, R., Nair, G.N.: Two extensions of topological feedback entropy. Math. Control Signals Syst. (2013). doi:10.1007/s00498-013-0113-7

    MathSciNet  Google Scholar 

  57. Hespanha, J., Ortega, A., Vasudevan, L.: Towards the control of linear systems with minimum bit rate. In: Proceedings of the International Symposium on the Mathematical Theory of Networks and Systems, University of Notre Dame, 2002

    Google Scholar 

  58. Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory I. Modelling, State Space Analysis, Stability and Robustness. Texts in Applied Mathematics, vol. 48. Springer, Berlin (2005)

    Google Scholar 

  59. Hoock, A.-M.: Topological entropy and invariance entropy for infinite-dimensional linear systems. J. Dyn. Control Syst. (2013) (to appear)

    Google Scholar 

  60. Ito, F.: An estimate from above for the entropy and the topological entropy of a \({\mathcal{C}}^{1}\)-diffeomorphism. Proc. Jpn. Acad. 46, 226–230 (1970)

    Article  MATH  Google Scholar 

  61. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and its Applications, vol. 54. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  62. Kawan, C.: Invariance entropy for control systems. Dissertation, University of Augsburg (2010)

    Google Scholar 

  63. Kawan, C.: Upper and lower estimates for invariance entropy. Discrete Contin. Dyn. Syst. 30(1), 169–186 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  64. Kawan, C.: Invariance entropy of control sets. SIAM J. Control Optim. 49(2), 732–751 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  65. Kawan, C.: Lower bounds for the strict invariance entropy. Nonlinearity 24(7), 1910–1936 (2011)

    Article  MathSciNet  Google Scholar 

  66. Kawan, C., Stender, T.: Growth rates for semiflows on Hausdorff spaces. J. Dyn. Differ. Equ. 24(2), 369–390 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  67. Keynes, H.B., Robertson, J.B.: Generators for topological entropy and expansiveness. Math. Syst. Theory 3, 51–59 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  68. Kloeden, P.E., Rasmussen, M.: Nonautonomous Dynamical Systems. Mathematical Surveys and Monographs, vol. 176. American Mathematical Society, Providence (2011)

    Google Scholar 

  69. Kolmogorov, A.N.: A new metric invariant of transient dynamical systems and automorphisms in Lebesgue spaces (Russian). Dokl. Akad. Nauk SSSR (N.S.) 119, 861–864 (1958)

    Google Scholar 

  70. Kolyada, S., Snoha, L.: Topological entropy of nonautonomous dynamical systems. Random Comput. Dyn. 4(2–3), 205–233 (1996)

    MathSciNet  MATH  Google Scholar 

  71. Kozlovski, O.S.: An integral formula for topological entropy of \({\mathcal{C}}^{\infty }\)-maps. Ergod. Theory Dyn. Syst. 18(2), 405–424 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  72. Kushnirenko, A.G.: An upperbound for the entropy of a classical dynamical system (English. Russian original). Dokl. Akad. Nauk SSSR 161, 37–38 (1965)

    Google Scholar 

  73. Lang, S.: Analysis II. Addison-Wesley, Reading (1969)

    MATH  Google Scholar 

  74. Ledrappier, F., Young, L.-S.: The metric entropy of diffeomorphisms. I: Characterization of measures satisfying Pesin’s entropy formula. II: Relations between entropy, exponents and dimension. Ann. Math. (2) 122, 509–539, 540–574 (1985)

    Google Scholar 

  75. Lee, J.M.: Introduction to Smooth Manifolds. Graduate Texts in Mathematics, vol. 218. Springer, New York (2003)

    Google Scholar 

  76. Liberzon, D., Hespanha, J.P.: Stabilization of nonlinear systems with limited information feedback. IEEE Trans. Autom. Control 50(6), 910–915 (2005)

    Article  MathSciNet  Google Scholar 

  77. Liu, P.-D.: Pesin’s entropy formula for endomorphisms. Nagoya Math. J. 150, 197–209 (1998)

    MathSciNet  MATH  Google Scholar 

  78. Liu, P.-D.: Random perturbations of axiom A basic sets. J. Stat. Phys. 90(1–2), 467–490 (1998)

    Article  MATH  Google Scholar 

  79. Matveev, A.S., Savkin, A.V.: Estimation and Control over Communication Networks. Control Engineering. Birkhäuser, Boston (2009)

    MATH  Google Scholar 

  80. Megginson, R.E.: An Introduction to Banach Space Theory. Graduate Texts in Mathematics, vol. 183. Springer, New York (1998)

    Google Scholar 

  81. Meyer, K.R., Sell, G.R.: Melnikov transforms, Bernoulli bundles, and almost periodic perturbations. Trans. Am. Math. Soc. 314(1), 63–105 (1989)

    MathSciNet  MATH  Google Scholar 

  82. Minero, P., Franceschetti, M., Dey, S., Nair, G.N.: Data rate theorem for stabilization over time-varying feedback channels. IEEE Trans. Autom. Control 54(2), 243–255 (2009)

    Article  MathSciNet  Google Scholar 

  83. Nair, G.N., Evans, R.J.: Exponential stabilisability of finite-dimensional linear system with limited data rates. Automatica (J. Int. Fed. Autom. Control) 39(4), 585–593 (2003)

    Google Scholar 

  84. Nair, G.N., Evans, R.J.: Stabilizability of stochastic linear systems with finite feedback data rates. SIAM J. Control Optim. 43(2), 413–436 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  85. Nair, G.N., Evans, R.J., Mareels, I.M.Y., Moran, W.: Topological feedback entropy and nonlinear stabilization. IEEE Trans. Autom. Control 49(9), 1585–1597 (2004)

    Article  MathSciNet  Google Scholar 

  86. Nair, G.N., Fagnani, F., Zampieri, S., Evans, R.J.: Feedback control under data rate constraints: An overview. Proc. IEEE 95, 108–137 (2007)

    Article  Google Scholar 

  87. Noack, A.: Dimensions- und Entropieabschätzungen sowie Stabilitätsuntersuchungen für nichtlineare Systeme auf Mannigfaltigkeiten (German). Dissertation, Technical University of Dresden (1998)

    Google Scholar 

  88. Patrão, M., San Martin, L.A.B.: Semiflows on topological spaces: Chain transitivity and semigroups. J. Dyn. Differ. Equ. 19(1), 155–180 (2007)

    Article  MATH  Google Scholar 

  89. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    Google Scholar 

  90. Pesin, Y.B.: Characteristic Lyapunov exponents and smooth ergodic theory (Russian). Uspehi Mat. Nauk 32 (4) (196), 55–112, 287 (1977)

    Google Scholar 

  91. Pogromsky, A.Y., Matveev, A.S.: Estimation of topological entropy via the direct Lyapunov method. Nonlinearity 24(7), 1937–1959 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  92. Qian, M., Zhang, Z.-S.: Ergodic theory of Axiom A endomorphisms. Ergod. Theory Dyn. Syst. 1, 161–174 (1995)

    MathSciNet  Google Scholar 

  93. Robinson, C.: Dynamical Systems. Stability, Symbolic Dynamics, and Chaos, 2nd edn. Studies in Advanced Mathematics. CRC Press, Boca Raton (1999)

    Google Scholar 

  94. Ruelle, D.: An inequality for the entropy of differentiable maps. Bol. Soc. Brasil. Mat. 9(1), 83–87 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  95. San Martin, L.A.B., Tonelli, P.A.: Semigroup actions on homogeneous spaces. Semigroup Forum 50, 59–88 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  96. Savkin, A.V.: Analysis and synthesis of networked control systems: Topological entropy, observability, robustness and optimal control. Automatica J. IFAC 42(1), 51–62 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  97. Schreiber, S.J.: On growth rates of subadditive functions for semiflows. J. Differ. Equ. 148(2), 334–350 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  98. Siegmund, S.: Spektral-Theorie, glatte Faserungen und Normalformen für Differentialgleichungen vom Carathéodory-Typ (German). Dissertation. Augsburger mathematisch-naturwissenschaftliche Schriften, Wißner Verlag, Augsburg (1999)

    Google Scholar 

  99. Sinai, Ja.: On the concept of entropy for a dynamic system (Russian). Dokl. Akad. Nauk SSSR 124, 768–771 (1959)

    Google Scholar 

  100. Sontag, E.D.: Finite-dimensional open-loop control generators for nonlinear systems. Int. J. Control 47(2), 537–556 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  101. Sontag, E.D.: Universal nonsingular controls. Syst. Control Lett. 19(3), 221–224 (1992); Errata, Syst. Control Lett. 20, 77 (1993)

    Google Scholar 

  102. Sontag, E.D.: Mathematical Control Theory. Deterministic Finite-Dimensional Systems, 2nd edn. Texts in Applied Mathematics, vol. 6. Springer, New York (1998)

    Google Scholar 

  103. Sontag, E.D., Wirth, F.R.: Remarks on universal nonsingular controls for discrete-time systems. Syst. Control Lett. 33(2), 81–88 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  104. Stoffer, D.: Transversal homoclinic points and hyperbolic sets for nonautonomous maps. I. Z. Angew. Math. Phys. 39(4), 518–549 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  105. Sussmann, H.J.: Single-input observability of continuous-time systems. Math. Syst. Theory 12(4), 371–393 (1979)

    MathSciNet  MATH  Google Scholar 

  106. Sussmann, H.J., Jurdjevic, V.: Controllability of nonlinear systems. J. Differ. Equ. 12, 95–116 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  107. Tatikonda, S., Mitter, S.: Control under communication constraints. IEEE Trans. Autom. Control 49(7), 1056–1068 (2004)

    Article  MathSciNet  Google Scholar 

  108. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Applied Mathematical Sciences, vol. 68. Springer, New York (1997)

    Google Scholar 

  109. Vera, G.F.: Conjuntos de Control de Sistemas Lineales y Afines. Conjuntos Isócrones de Sistemas Invariantes (Spanish). Dissertation, Universidad Católica del Norte, Antofagasta, Chile (2009)

    Google Scholar 

  110. Wirth, F.R.: Robust Stability of Discrete-Time Systems under Time-Varying Perturbations. Dissertation, University of Bremen (1995)

    MATH  Google Scholar 

  111. Wirth, F.R.: Universal controls for homogeneous discrete-time systems. In: Proceedings of the 33rd IEEE CDC, New Orleans, 1995

    Google Scholar 

  112. Wirth, F.R.: Dynamics and controllability of nonlinear discrete-time control systems. In: 4th IFAC Nonlinear Control Systems Design Symposium (NOLCOS’98), Enschede, 1998

    Google Scholar 

  113. Wong, W.S., Brockett, R.W.: Systems with finite communication bandwidth constraints-II: Stabilization with limited information feedback. IEEE Trans. Autom. Control 44(5), 1049–1053 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  114. Xie, L.: Topological entropy and data rate for practical stability: A scalar case. Asian J. Control 11(4), 376–385 (2009)

    Article  MathSciNet  Google Scholar 

  115. Young, L.-S.: Large deviations in dynamical systems. Trans. Am. Math. Soc. 318, 525–543 (1990)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kawan, C. (2013). Basic Properties of Control Systems. In: Invariance Entropy for Deterministic Control Systems. Lecture Notes in Mathematics, vol 2089. Springer, Cham. https://doi.org/10.1007/978-3-319-01288-9_1

Download citation

Publish with us

Policies and ethics