Skip to main content

Major Applications

  • Chapter
  • First Online:
Thermal Contact Conductance

Part of the book series: Mechanical Engineering Series ((MES))

  • 3886 Accesses

Abstract

In this chapter some major applications in which contact conductance plays a significant role will be discussed in detail. These applications include finned tube heat exchangers, a variety of manufacturing processes and heat transfer in stationary packed beds. The topics are chosen on the basis of their contemporary interest, practical significance and extensive information available in each category.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Contact Heat Transfer in Finned Tubes

  • Cheng W (2006) Enhancing heat transfer performance of compact heat exchangers. PhD Thesis, The University of New South Wales, Australia

    Google Scholar 

  • Cheng W, Madhusudana C (2004), Design and fabrication of a test apparatus for measuring thermal contact conductance in a finned-tube heat exchanger. Paper no. HMT-2004-C056, 17th national and 6th ISHMT-ASME heat and mass transfer conference, Kalpakkam, India

    Google Scholar 

  • Cheng W, Madhusudana CV (2006a) Effect of soft plating on the thermal contact conductance of finned-tube heat exchangers. HVAC&R Research 12:89–109

    Article  Google Scholar 

  • Cheng W, Madhusudana C (2006b) Effect of electroplating on the thermal conductance of fin-tube interface. Appl Therm Eng 26:2119–2131

    Article  Google Scholar 

  • Dart DM (1959) Effect of fin bond on heat transfer. ASHRAE J 1:67–71

    Google Scholar 

  • Deng J, Pagliarini G, Salvigni S (1997) A new method to estimate the thermal contact resistance in finned-tube heat exchangers. ASHRAE Trans 103:316–321

    Google Scholar 

  • Gardner KA, Carnavos TC (1960) Thermal contact resistance in finned tubing. Trans ASME, J Heat Transfer 82:279–293

    Article  Google Scholar 

  • Jeong J, Kim CN, Youn B (2006). A study on the thermal contact conductance in fin-tube heat exchangers with 7 mm tube. Int J Heat and Mass Transfer, 49:1547–1555

    Google Scholar 

  • Kulkarni MV, Young EH (1966) Bimetallic finned tubes. Chem Eng Prog 62(7):68–71

    Google Scholar 

  • Madhusudana CV, Cheng W (2007) Decrease jn thermal contact conductance and the contact pressure of finned tube heat exchangers assembled with different size bullets. Trans ASME, J Heat Transfer 127:907–911

    Article  Google Scholar 

  • Piir AÉ, Roshchin SP, Vereshchagin AYu, Kuntysh VB, Minnigaleev ASh (2007) Effects of repeated high-temperature cycles on the thermal contact resistance of bimetallic finned tubes. Chem Pet Eng 43:519–522

    Article  Google Scholar 

  • Sheffield JW, Abu-Ebid M, Sauer HJ Jr (1985). Finned tube contact conductance: empirical correlation of thermal conductance. ASHRAE Trans 91(2a):100–117

    Google Scholar 

  • Taborek J (1987) Bond resistance and design temperatures for high-finned tubes—a reappraisal. Heat Trans Eng 8(2):26–34

    Article  Google Scholar 

  • Zhao H, Salazar AJ, Sekulic DP (2009) Analysis of fin-tube joints in a compact heat exchanger. Heat Transfer Eng 30(12):931–940

    Google Scholar 

Manufacturing Processes

  • Bendada A, Derdouri A, Lamontagne M, Simard Y (2003) Investigation of thermal contact resistance in injection molding using a hollow waveguide pyrometer and a two-thermocouple probe. Rev Sci Instrum 74:5282–5284

    Article  Google Scholar 

  • Bordival M, Schmidt FM, Le Maoult Y, Coment E (2007) Measurement of thermal contact resistance between the mold and the polymer for rhe stretch-blow molding process. In: Cueto E, Chinesta F (eds) CP907, 10th ESAFORM conference on material forming, pp 1245–1250

    Google Scholar 

  • Hamasaiid A, Dour G, Loulou T, Dargusch MS (2010) A predictive model for the evolution of the thermal conductance at the casting–die interfaces in high pressure die casting. Int J Thermal Sci 49:365–372

    Article  Google Scholar 

  • Heichal Y, Chandra S (2004) Predicting thermal contact resistance between molten metal droplets and a solid surface. Trans ASME J Heat Transfer 127:1269–1275

    Article  Google Scholar 

  • Hong FJ, Qiu H–H (2007) Characterization of variable thermal contact resistance in rapid contact solidification utilizing novel ultrasound technique. Trans ASME, J Heat Transfer 129:1036–1045

    Article  Google Scholar 

  • Li H (2004) The role of the thermal contact resistance in the injection mold cooling of poly (ethylene terephthalate). Ph.D. thesis, The University of Toledo

    Google Scholar 

  • Lou lou T, Bardon JP (2001) Estimation of thermal contact conductance during resistance spot welding. Exp Heat Transfer 14:251–264

    Article  Google Scholar 

  • McDonald A, Moreau C, Chandra S (2007) Thermal contact resistance between plasma-sprayed particles and flat surfaces. Int J Heat and Mass Transfer 50:1737–1749

    Google Scholar 

  • Sridhar L (1999) Investigation of thermal contact resistance at a plastic-metal interface in injection molding. Ph.D. thesis, New Jersey Institute of Technology

    Google Scholar 

  • Sridhar L, Yin W, Narh KA (2000) The effect of shrinkage induced interface gap on the thermal contact resistance between the mold and plastic in injection molding. J Injection Molding Technol 4:44–49

    Google Scholar 

  • Xue M, Heichal Y, Chandra S, Mostaghimi J (2007) Modeling the impact of a molten metal droplet on a solid surface using variable interfacial thermal contact resistance. J Mater Sci 42:9–18

    Article  Google Scholar 

  • Yu CJ, Sunderland JE, Poli C (1990) Thermal contact resistance in injection molding. Polymer Eng Sci 30:1599–1606

    Google Scholar 

Effective Thermal Conductivity of Packed Beds

  • Bruggeman DAG (1935) Dielectric constant and conductivity of mixtures of isotropic materials. Ann Phys, Series 5(24):636–664

    Article  Google Scholar 

  • Chan CK, Tien CL (1973) Conductance of packed spheres in vacuum. Trans ASME, J Heat Transfer 95:302–308

    Article  Google Scholar 

  • Chen JC, Churchill SW (1963) Radiant heat transfer in packed beds. Am Inst Chem Eng 9(1):35–41

    Article  Google Scholar 

  • Hadley GR (1986) Thermal conductivity of packed metal powders. Int J Heat Mass Transfer 29:909–920

    Article  Google Scholar 

  • Hsu CT, Cheng P, Wong KW (1994) Modified Zehner-Schlunder models for stagnant thermal conductivity of porous media. Int J Heat Mass Transfer 37:2751–2759

    Article  MATH  Google Scholar 

  • Imura S, Tagekoshi E (1974) Effect of gas pressure on the effective thermal conductivity of packed beds. Heat Transfer: Japanese Res 3:13

    Google Scholar 

  • Kamiuto K, Nagumo Y, Iwamoto M (1989) Mean effective thermal conductivity of packed-sphere systems. Appl Energy 34:213–221

    Article  Google Scholar 

  • Krupiczka R (1967) Analysis of thermal conductivity in granular materials. Int Chem Eng 7:122–144

    Google Scholar 

  • Lu Z (2000) Numerical modeling and experimental measurement of thermal and mechanical proerties of packed beds. Ph.D. thesis, University of California, Los Angeles

    Google Scholar 

  • Madhusudana CV (2006a) Experimental determination of the effective thermal conductivity of packed glass beads. Paper No. HMT-2006-C152, 18th national and 7th ISHMT-ASME heat and mass transfer conference, Guwahati, India

    Google Scholar 

  • Madhusudana CV (2006b) Low thermal conductivity measurements with a GHP apparatus. Paper No Exp-15, 13th international heat transfer conference, Sydney, Australia

    Google Scholar 

  • Nasr K, Viskanta R, Ramadhyani S (1994) An experimental evaluation of the effective thermal conductivity of packed beds at high temperatures. Trans ASME, J Heat Transfer 116:829–837

    Article  Google Scholar 

  • Ogniewicz Y, Yovanovich MM (1977) Effective thermal conductivity of regularly packed spheres: basic cell model with constriction. AIAA Paper 77–188. American Institute of Aeronautics and Astonautics, New York

    Google Scholar 

  • Reddy KS, Karthikeyan P (2009) Estimation of effective thermal conductivity of two-phase materials using collocated parameter model. Heat Transfer Eng 30:998–1011

    Article  Google Scholar 

  • Siu WWM (2001) Discrete formulation using thermal resistance for conduction heat transfer analysis of sphere packings. Ph.D. thesis, The Hong Kong University of Science and Technology

    Google Scholar 

  • Siu WWM, Lee S.H.-K (2004) Contact resistance measurement and its effect on the thermal conductivity of packed sphere systems. Trans ASME, J Heat Transfer 126:886–895

    Google Scholar 

  • Yovanovich MM (1973) Apparent conductivity of glass microspheres from atmospheric pressure to vacuum. ASME Paper 73-HT-43, American Society of Mechanical Engineers, New York

    Google Scholar 

  • Yun TS, Santamarina JC (2008) Fundamental study of thermal conduction in dry soils. Granular Matter 10:197–207

    Article  MATH  Google Scholar 

  • Zehner P, Schlunder EU (1970) Thermal conductivity of granular materials at moderate temperatures. Chem Ing Tech 42:933–941 (In German)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. V. Madhusudana .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Madhusudana, C.V. (2014). Major Applications. In: Thermal Contact Conductance. Mechanical Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-319-01276-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01276-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01275-9

  • Online ISBN: 978-3-319-01276-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics