Skip to main content

Systems of Higher Order Boundary Value Problems: Integrable Singularities

  • Chapter
  • First Online:
  • 703 Accesses

Abstract

In this chapter we shall consider three systems of boundary value problems where the nonlinearities may be singular in the independent variable and may also be singular in the dependent arguments. The first system we tackle is that of Dirichlet boundary value problems

$$\displaystyle{\left\{\begin{array}{l} v^{\prime \prime}_{i}(t) + f_{i}(t,\tilde{v}(t)) = 0,\ \ a.e.\ t \in [0,1] \\ v_{i}(0) = v_{i}(1) = 0, \\ i = 1,2,\cdots \,,n\end{array} \right. }$$
(8.1.1)

where

$$\displaystyle{\tilde{v} \equiv (v_{1},v^{\prime}_{1},v_{2},v^{\prime}_{2}\cdots \,,v_{n},v^{\prime}_{n}).}$$

The nonlinearities f i , 1 ≤ in in the above system may be singular in the independent variable and may also be singular at v i = 0 where \(i \in \{ 1,2,\cdots \,,n\}.\)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.P. Agarwal, M. Bohner, P.J.Y. Wong, Positive solutions and eigenvalues of conjugate boundary value problems. Proc. Edinb. Math. Soc. (Ser. 2) 42, 349–374 (1999)

    Google Scholar 

  2. R.P. Agarwal, S.R. Grace, D. O’Regan, Existence of positive solutions to semipositone Fredholm integral equations. Funkcial. Ekvac. 45, 223–235 (2002)

    MathSciNet  MATH  Google Scholar 

  3. R.P. Agarwal, J. Henderson, P.J.Y. Wong, On superlinear and sublinear (n, p) boundary value problems for higher order difference equations. Nonlinear World 4, 101–115 (1997)

    MathSciNet  MATH  Google Scholar 

  4. R.P. Agarwal, M. Meehan, D. O’Regan, Nonlinear Integral Equations and Inclusions (Nova Science Publishers, Hungtington, 2001)

    Google Scholar 

  5. R.P. Agarwal, M. Meehan, D. O’Regan, Positive solutions of singular integral equations—a survey. Dyn. Syst. Appl. 14, 1–37 (2005)

    MathSciNet  MATH  Google Scholar 

  6. R.P. Agarwal, D. O’Regan, Singular Volterra integral equations. Appl. Math. Lett. 13, 115–120 (2000)

    MATH  Google Scholar 

  7. R.P. Agarwal, D. O’Regan, Existence of three solutions to integral and discrete equations via the Leggett Williams fixed point theorem. Rocky Mt. J. Math. 31, 23–35 (2001)

    MATH  Google Scholar 

  8. R.P. Agarwal, D. O’Regan, A note on a singular integral equation arising in a problem in communications. Z. Angew. Math. Mech. 81, 499–504 (2001)

    MATH  Google Scholar 

  9. R.P. Agarwal, D. O’Regan, Existence criteria for singular boundary value problems with sign changing nonlinearities. J. Differ. Equat. 183, 409–433 (2002)

    MATH  Google Scholar 

  10. R.P. Agarwal, D. O’Regan, Singular differential, integral and discrete equations: the semipositone case. Mosc. Math. J. 2, 1–15 (2002)

    MathSciNet  MATH  Google Scholar 

  11. R.P. Agarwal, D. O’Regan, Singular integral equations arising in Homann flow. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms 9, 481–488 (2002)

    MathSciNet  MATH  Google Scholar 

  12. R.P. Agarwal, D. O’Regan, Volterra integral equations: the singular case. Hokkaido Math. J. 32, 371–381 (2003)

    MathSciNet  MATH  Google Scholar 

  13. R.P. Agarwal, D. O’Regan, Singular boundary value problems with integrable singularities. Miskolc Math. Notes 2, 119–127 (2004)

    Google Scholar 

  14. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Positive Solutions of Differential, Difference and Integral Equations (Kluwer, Dordrecht, 1999)

    MATH  Google Scholar 

  15. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Constant-sign solutions of a system of Fredholm integral equations. Acta Appl. Math. 80, 57–94 (2004)

    MathSciNet  MATH  Google Scholar 

  16. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Eigenvalues of a system of Fredholm integral equations. Math. Comput. Model. 39, 1113–1150 (2004)

    MathSciNet  MATH  Google Scholar 

  17. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Triple solutions of constant sign for a system of Fredholm integral equations. Cubo 6, 1–45 (2004)

    MathSciNet  MATH  Google Scholar 

  18. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Constant-sign L p solutions for a system of integral equations. Results Math. 46, 195–219 (2004)

    MathSciNet  MATH  Google Scholar 

  19. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Constant-sign solutions of a system of integral equations: the semipositone and singular case. Asymptot. Anal. 43, 47–74 (2005)

    MathSciNet  MATH  Google Scholar 

  20. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Constant-sign periodic and almost periodic solutions for a system of integral equations. Acta Appl. Math. 89, 177–216 (2005)

    MathSciNet  MATH  Google Scholar 

  21. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Constant-sign solutions of systems of higher order boundary value problems with integrable singularities. Math. Comput. Model. 44, 983–1008 (2006)

    MathSciNet  MATH  Google Scholar 

  22. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, On constant-sign periodic solutions in modeling the spread of interdependent epidemics. ANZIAM J. 47, 309–332 (2006)

    MathSciNet  MATH  Google Scholar 

  23. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Constant-sign solutions of a system of integral equations with integrable singularities. J. Integr. Equat. Appl. 19, 117–142 (2007)

    MathSciNet  MATH  Google Scholar 

  24. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Constant-sign solutions of a system of Volterra integral equations. Comput. Math. Appl. 54, 58–75 (2007)

    MathSciNet  MATH  Google Scholar 

  25. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Constant-sign solutions for systems of Fredholm and Volterra integral equations: the singular case. Acta Appl. Math. 103, 253–276 (2008)

    MathSciNet  MATH  Google Scholar 

  26. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Constant-sign solutions of a system of Volterra integral equations in Orlicz spaces. J. Integr. Equat. Appl. 20, 337–378 (2008)

    MathSciNet  MATH  Google Scholar 

  27. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Constant-sign solutions of a system of Urysohn integral equations. Numer. Funct. Anal. Optim. 29, 1205–1239 (2008)

    MathSciNet  MATH  Google Scholar 

  28. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Constant-sign solutions for systems of singular integral equations of Hammerstein type. Math. Comput. Model. 50, 999–1025 (2009)

    MathSciNet  MATH  Google Scholar 

  29. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Solutions of a system of integral equations in Orlicz spaces. J. Integr. Equat. Appl. 21, 469–498 (2009)

    MathSciNet  MATH  Google Scholar 

  30. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Constant-sign solutions for singular systems of Fredholm integral equations. Math. Meth. Appl. Sci. 33, 1783–1793 (2010)

    MathSciNet  MATH  Google Scholar 

  31. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Periodic constant-sign solutions for systems of Hill’s equations. Asymptot. Anal. 67, 191–216 (2010)

    MathSciNet  MATH  Google Scholar 

  32. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Existence results of Brezis–Browder type for systems of Fredholm integral equations. Adv. Difference Equat. 2011(43), 1–35 (2011)

    MathSciNet  Google Scholar 

  33. R.P. Agarwal, D. O’Regan, P.J.Y. Wong, Existence of solutions of systems of Volterra integral equations via Brezis–Browder arguments. Electron. J. Differ. Equat. 2011(104), 1–19 (2011)

    MathSciNet  Google Scholar 

  34. R.P. Agarwal, K. Perera, D. O’Regan, Multiple positive solutions of singular problems by variational methods. Proc. Am. Math. Soc. 134, 817–824 (2006)

    MathSciNet  MATH  Google Scholar 

  35. R.P. Agarwal, P.J.Y. Wong, Advanced Topics in Difference Equations (Kluwer, Dordrecht, 1997)

    MATH  Google Scholar 

  36. D. Anderson, R.I. Avery, Multiple positive solutions to a third order discrete focal boundary value problem. Comput. Math. Appl. 42, 333–340 (2001)

    MathSciNet  MATH  Google Scholar 

  37. D. Anderson, R.I. Avery, A.C. Peterson, Three positive solutions to a discrete focal boundary value problem. J. Comput. Appl. Math. 88, 102–118 (1998)

    MathSciNet  Google Scholar 

  38. P.M. Anselone, J.W. Lee, Nonlinear integral equations on the half line. J. Integr. Equat. Appl. 4, 1–14 (1992)

    MathSciNet  MATH  Google Scholar 

  39. P.M. Anselone, I.H. Sloan, Integral equations on the half line. J. Integr. Equat. 9, 3–23 (1985)

    MathSciNet  MATH  Google Scholar 

  40. J. Appell, The importance of being Orlicz, in Orlicz Centenary Volume, vol. 64 (Banach Center Publications, Polish Academy Sciences, Warsaw, 2004), pp. 21–28

    Google Scholar 

  41. J. Appell, E. De Pascale, J.V. Lysenko, P.P. Zabrejko, New results on Newton–Kantorovich approximations with applications to nonlinear integral equations. Numer. Funct. Anal. Optim. 18, 1–17 (1997)

    MathSciNet  MATH  Google Scholar 

  42. J. Appell, E. De Pascale, H.T. Nguyen, P.P. Zabreiko, Nonlinear integral inclusions of Hammerstein type. Topol. Meth. Nonlinear Anal. 5, 111–124 (1995)

    MATH  Google Scholar 

  43. J. Appell, E. De Pascale, P.P. Zabrejko, On the application of the Newton–Kantorovich method to nonlinear integral equations of Uryson type. Numer. Funct. Anal. Optim. 12, 271–283 (1991)

    MathSciNet  MATH  Google Scholar 

  44. J. Appell, M. Väth, Weakly singular Hammerstein–Volterra operators in Orlicz and Hölder spaces. Z. Anal. Anwend. 12, 663–676 (1993)

    MATH  Google Scholar 

  45. R.I. Avery, A generalization of the Leggett–Williams fixed point theorem. Math. Sci. Res. Hot-Line 2, 9–14 (1998)

    MathSciNet  Google Scholar 

  46. R.I. Avery, Multiple positive solutions of an nth order focal boundary value problem. Panam. Math. J. 8, 39–55 (1998)

    MathSciNet  MATH  Google Scholar 

  47. R.I. Avery, Existence of multiple positive solutions to a conjugate boundary value problem. Math. Sci. Res. Hot-Line 2, 1–6 (1998)

    MathSciNet  MATH  Google Scholar 

  48. R.I. Avery, J. Henderson, Three symmetric positive solutions for a second order boundary value problem. Appl. Math. Lett. 13, 1–7 (2000)

    MathSciNet  MATH  Google Scholar 

  49. R.I. Avery, A.C. Peterson, Multiple positive solutions of a discrete second order conjugate problem. Panam. Math. J. 8, 1–12 (1998)

    MathSciNet  MATH  Google Scholar 

  50. L.E. Bobisud, J.E. Calvert, W.D. Royalty, Some existence results for singular boundary value problems. Differ. Integr. Equat. 6, 553–571 (1993)

    MathSciNet  MATH  Google Scholar 

  51. G. Bonanno, An existence theorem of positive solutions to a singular nonlinear boundary value problem. Comment. Math. Univ. Carolin. 36, 609–614 (1995)

    MathSciNet  MATH  Google Scholar 

  52. G. Bonanno, Positive solutions to nonlinear singular second order boundary value problems. Ann. Polon. Math. 64, 237–251 (1996)

    MathSciNet  MATH  Google Scholar 

  53. D. Bonheure, C. De Coster, Forced singular oscillators and the method of lower and upper solutions. Topol. Meth. Nonlinear Anal. 22, 297–317 (2003)

    MATH  Google Scholar 

  54. H. Brezis, F.E. Browder, Existence theorems for nonlinear integral equations of Hammerstein type. Bull. Am. Math. Soc. 81, 73–78 (1975)

    MathSciNet  MATH  Google Scholar 

  55. P.J. Bushell, On a class of Volterra and Fredholm non-linear integral equations. Math. Proc. Camb. Philos. Soc. 79, 329–335 (1976)

    MathSciNet  MATH  Google Scholar 

  56. P.J. Bushell, W. Okrasiński, Uniqueness of solutions for a class of nonlinear Volterra integral equations with convolution kernel. Math. Proc. Camb. Philos. Soc. 106, 547–552 (1989)

    MATH  Google Scholar 

  57. P.J. Bushell, W. Okrasiński, Nonlinear Volterra integral equations with convolution kernel. J. Lond. Math. Soc. 41, 503–510 (1990)

    MATH  Google Scholar 

  58. A. Cabada, P. Habets, S. Lois, Monotone method for the Neumann problem with lower and upper solutions in the reverse order. Appl. Math. Comput. 117, 1–14 (2001)

    MathSciNet  MATH  Google Scholar 

  59. A. Cabada, L. Sanchez, A positive operator approach to the Neumann problem for a second order ordinary differential equation. J. Math. Anal. Appl. 204, 774–785 (1996)

    MathSciNet  MATH  Google Scholar 

  60. A. Callegari, A. Nachman, Some singular, nonlinear differential equations arising in boundary layer theory. J. Math. Anal. Appl. 64, 96–105 (1978)

    MathSciNet  MATH  Google Scholar 

  61. A. Canada, J.A. Montero, S. Villegas, Liapunov-type inequalities and Neumann boundary value problems at resonance. Math. Inequal. Appl. 8, 459–475 (2005)

    MathSciNet  MATH  Google Scholar 

  62. W.S. Cheung, P.J.Y. Wong, Fixed-sign solutions for a system of singular focal boundary value problems. J. Math. Anal. Appl. 329, 851–869 (2007)

    MathSciNet  MATH  Google Scholar 

  63. J. Chu, M. Li, Positive periodic solutions of Hill’s equations with singular nonlinear perturbations. Nonlinear Anal. 69, 276–286 (2008)

    MathSciNet  MATH  Google Scholar 

  64. J. Chu, D. O’Regan, Singular integral equations of Hammerstein type and applications to nonlinear conjugate problems. Taiwan. J. Math. 14, 329–345 (2010)

    MathSciNet  MATH  Google Scholar 

  65. J. Chu, Y. Sun, H. Chen, Positive solutions of Neumann problems with singularities. J. Math. Anal. Appl. 337, 1267–1272 (2008)

    MathSciNet  MATH  Google Scholar 

  66. J. Chu, P.J. Torres, Applications of Schauder’s fixed point theorem to singular differential equations. Bull. Lond. Math. Soc. 39, 653–660 (2007)

    MathSciNet  MATH  Google Scholar 

  67. J. Chu, P.J. Torres, M. Zhang, Periodic solutions of second order non-autonomous singular dynamical systems. J. Differ. Equat. 239, 196–212 (2007)

    MathSciNet  MATH  Google Scholar 

  68. K.L. Cooke, J.L. Kaplan, A periodicity threshold theorem for epidemics and population growth. Math. Biosci. 31, 87–104 (1976)

    MathSciNet  MATH  Google Scholar 

  69. C. Corduneanu, Almost Periodic Functions (Interscience, New York, 1968)

    MATH  Google Scholar 

  70. C. Corduneanu, Admissibility with respect to an integral operator and applications. SIAM Stud. Appl. Math. 5, 55–63 (1969)

    MathSciNet  Google Scholar 

  71. C. Corduneanu, Integral Equations and Stability of Feedback Systems (Academic, New York, 1973)

    MATH  Google Scholar 

  72. C. Corduneanu, Integral Equations and Applications (Cambridge University Press, New York, 1990)

    Google Scholar 

  73. M.A. Darwish, On integral equations of Urysohn–Volterra type. Appl. Math. Comput. 136, 93–98 (2003)

    MathSciNet  MATH  Google Scholar 

  74. J.M. Davis, P.W. Eloe, J. Henderson, Triple positive solutions and dependence on higher order derivatives. J. Math. Anal. Appl. 237, 710–720 (1999)

    MathSciNet  MATH  Google Scholar 

  75. M. del Pino, R. Manásevich, Infinitely many T-periodic solutions for a problem arising in nonlinear elasticity. J. Differ. Equat. 103, 260–277 (1993)

    MATH  Google Scholar 

  76. M. del Pino, R. Manásevich, A. Montero, T-periodic solutions for some second order differential equations with singularities. Proc. R. Soc. Edinb. Sect. A 120, 231–243 (1992)

    MATH  Google Scholar 

  77. W. Dong, Uniqueness of solutions for a class of non-linear Volterra integral equations without continuity. Appl. Math. Mech. (English Ed.) 18, 1191–1196 (1997)

    MathSciNet  MATH  Google Scholar 

  78. J. Dugundji, A. Granas, Fixed Point Theory. Monografie Mathematyczne (PWN, Warsaw, 1982)

    MATH  Google Scholar 

  79. N. Dunford, J.T. Schwartz, Linear Operators (Interscience, New York, 1958)

    MATH  Google Scholar 

  80. P.W. Eloe, J. Henderson, Positive solutions and nonlinear multipoint conjugate eigenvalue problems. Electron. J. Differ. Equat. 3, 1–11 (1997)

    MathSciNet  Google Scholar 

  81. P.W. Eloe, J. Henderson, Singular nonlinear (k, nk) conjugate boundary value problems. J. Differ. Equat. 133, 136–151 (1997)

    MathSciNet  MATH  Google Scholar 

  82. P.W. Eloe, J. Henderson, Positive solutions and nonlinear (k, nk) conjugate eigenvalue problems. Differ. Equat. Dyn. Syst. 6, 309–317 (1998)

    MathSciNet  MATH  Google Scholar 

  83. W.G. El-Sayed, A.A. El-Bary, M.A. Darwish, Solvability of Urysohn integral equation. Appl. Math. Comput. 145, 487–493 (2003)

    MathSciNet  MATH  Google Scholar 

  84. L.H. Erbe, S. Hu, H. Wang, Multiple positive solutions of some boundary value problems. J. Math. Anal. Appl. 184, 640–648 (1994)

    MathSciNet  MATH  Google Scholar 

  85. L.H. Erbe, A. Peterson, Eigenvalue conditions and positive solutions. J. Difference Equat. Appl. 6, 165–191 (2000)

    MathSciNet  MATH  Google Scholar 

  86. L.H. Erbe, H. Wang, On the existence of positive solutions of ordinary differential equations. Proc. Am. Math. Soc. 120, 743–748 (1994)

    MathSciNet  MATH  Google Scholar 

  87. F. Faraci, V. Moroz, Solutions of Hammerstein integral equations via a variational principle. J. Integr. Equat. Appl. 15, 385–402 (2003)

    MathSciNet  MATH  Google Scholar 

  88. D. Franco, G. Infante, D. O’Regan, Positive and nontrivial solutions for the Urysohn integral equation. Acta Math. Sin. (Engl. Ser.) 22, 1745–1750 (2006)

    MathSciNet  MATH  Google Scholar 

  89. D. Franco, G. Infante, D. O’Regan, Nontrivial solutions in abstract cones for Hammerstein integral systems. Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 14, 837–850 (2007)

    MathSciNet  MATH  Google Scholar 

  90. D. Franco, P.J. Torres, Periodic solutions of singular systems without the strong force condition. Proc. Am. Math. Soc. 136, 1229–1236 (2008)

    MathSciNet  MATH  Google Scholar 

  91. D. Franco, J.R.L. Webb, Collisionless orbits of singular and nonsingular dynamical systems. Discrete Contin. Dyn. Syst. 15, 747–757 (2006)

    MathSciNet  MATH  Google Scholar 

  92. C. Georgescu, Existence results for Urysohn integral equations (preprint)

    Google Scholar 

  93. G. Gripenberg, Unique solutions of some Volterra integral equations. Math. Scand. 48, 59–67 (1981)

    MathSciNet  MATH  Google Scholar 

  94. G. Gripenberg, S.-O. Londen, O. Staffans, Volterra Integral and Functional Equations. Encyclopedia of Mathematics and its Applications, vol. 34 (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  95. D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones (Academic, San Diego, 1988)

    MATH  Google Scholar 

  96. C.P. Gupta, Existence and uniqueness theorems for the bending of an elastic beam equation. Appl. Anal. 26, 289–304 (1998)

    Google Scholar 

  97. P. Habets, L. Sanchez, Periodic solutions of some Liénard equations with singularities. Proc. Am. Math. Soc. 109, 1035–1044 (1990)

    MathSciNet  MATH  Google Scholar 

  98. P. Habets, F. Zanolin, Upper and lower solutions for a generalized Emden–Fowler equation. J. Math. Anal. Appl. 181, 684–700 (1994)

    MathSciNet  MATH  Google Scholar 

  99. G. Infante, J.R.L. Webb, Nonzero solutions of Hammerstein integral equations with discontinuous kernels. J. Math. Anal. Appl. 272, 30–42 (2002)

    MathSciNet  MATH  Google Scholar 

  100. G. Infante, J.R.L. Webb, Nonlinear non-local boundary-value problems and perturbed Hammerstein integral equations. Proc. Edinb. Math. Soc. (2) 49, 637–656 (2006)

    Google Scholar 

  101. D. Jiang, On the existence of positive solutions to second order periodic boundary value problems. Acta Math. Sci. 18, 31–35 (1998)

    Google Scholar 

  102. D. Jiang, J. Chu, M. Zhang, Multiplicity of positive solutions to superlinear repulsive singular equations. J. Differ. Equat. 211, 282–302 (2005)

    MathSciNet  MATH  Google Scholar 

  103. D. Jiang, H. Liu, Existence of positive solutions to second order Neumann boundary value problems. J. Math. Res. Expo. 20, 360–364 (2000)

    MathSciNet  MATH  Google Scholar 

  104. M. Joshi, Existence theorems for Urysohn’s integral equation. Proc. Am. Math. Soc. 49, 387–392 (1975)

    MATH  Google Scholar 

  105. S. Karlin, L. Nirenberg, On a theorem of P. Nowosad. J. Math. Anal. Appl. 17, 61–67 (1967)

    MathSciNet  MATH  Google Scholar 

  106. J. Kolomý, The solvability of nonlinear integral equations. Comment. Math. Univ. Carolinae 8, 273–289 (1967)

    MathSciNet  MATH  Google Scholar 

  107. M.A. Krasnosel’skii, Positive Solutions of Operator Equations (Noordhoff, Groningen, 1964)

    Google Scholar 

  108. M.A. Krasnosel’skii, Topological Methods in the Theory of Nonlinear Integral Equations (Pergamon Press, Oxford, 1964)

    Google Scholar 

  109. M.A. Krasnosel’skii, Ya.B. Rutickii, Convex Functions and Orlicz Spaces (Trans. L.F. Boron) (Noordhoff, Groningen, 1961)

    Google Scholar 

  110. K.Q. Lan, Multiple positive solutions of Hammerstein integral equations and applications to periodic boundary value problems. Appl. Math. Comput. 154, 531–542 (2004)

    MathSciNet  MATH  Google Scholar 

  111. K.Q. Lan, Multiple positive solutions of semilinear differential equations with singularities. J. Lond. Math. Soc. 63, 690–704 (2001)

    MATH  Google Scholar 

  112. K.Q. Lan, Positive solutions of semi-positone Hammerstein integral equations and applications. Commun. Pure Appl. Anal. 6, 441–451 (2007)

    MathSciNet  MATH  Google Scholar 

  113. K.Q. Lan, J.R.L. Webb, Positive solutions of semilinear differential equations with singularities. J. Differ. Equat. 148, 407–421 (1998)

    MathSciNet  MATH  Google Scholar 

  114. A.C. Lazer, S. Solimini, On periodic solutions of nonlinear differential equations with singularities. Proc. Am. Math. Soc. 99, 109–114 (1987)

    MathSciNet  MATH  Google Scholar 

  115. J. Lee, D. O’Regan, Existence principles for nonlinear integral equations on semi-infinite and half-open intervals, in Advances in Nonlinear Dynamics, ed. by S. Sivasundarem, A.A. Martynyuk (Gordon and Breach, Amsterdam, 1997), pp. 355–364

    Google Scholar 

  116. R.W. Leggett, L.R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Inidana Univ. Math. J. 28, 673–688 (1979)

    MathSciNet  MATH  Google Scholar 

  117. R.W. Leggett, L.R. Williams, A fixed point theorem with application to an infectious disease model. J. Math. Anal. Appl. 76, 91–97 (1980)

    MathSciNet  MATH  Google Scholar 

  118. F. Li, Y. Li, Z. Liang, Existence of solutions to nonlinear Hammerstein integral equations and applications. J. Math. Anal. Appl. 323, 209–227 (2006)

    MathSciNet  MATH  Google Scholar 

  119. W. Lian, F. Wong, C. Yeh, On the existence of positive solutions of nonlinear second order differential equations. Proc. Am. Math. Soc. 124, 1117–1126 (1996)

    MathSciNet  MATH  Google Scholar 

  120. H. Liang, H. Pang, W. Ge, Triple positive solutions for boundary value problems on infinite intervals. Nonlinear Anal. 67, 2199–2207 (2007)

    MathSciNet  Google Scholar 

  121. X. Lin, D. Jiang, D. O’Regan, R.P. Agarwal, Twin positive periodic solutions of second order singular differential systems. Topol. Meth. Nonlinear Anal. 25, 263–273 (2005)

    MathSciNet  MATH  Google Scholar 

  122. M. Meehan, D. O’Regan, Existence theory for nonlinear Volterra integrodifferential and integral equations. Nonlinear Anal. 31, 317–341 (1998)

    MathSciNet  MATH  Google Scholar 

  123. M. Meehan, D. O’Regan, Positive solutions of singular and nonsingular Fredholm integral equations. J. Math. Anal. Appl. 240, 416–432 (1999)

    MathSciNet  MATH  Google Scholar 

  124. M. Meehan, D. O’Regan, Existence theory for nonlinear Fredholm and Volterra integral equations on half-open intervals. Nonlinear Anal. 35, 355–387 (1999)

    MathSciNet  MATH  Google Scholar 

  125. M. Meehan, D. O’Regan, Multiple nonnegative solutions of nonlinear integral equations on compact and semi-infinite intervals. Appl. Anal. 74, 413–427 (2000)

    MathSciNet  MATH  Google Scholar 

  126. M. Meehan, D. O’Regan, Positive solutions of singular integral equations. J. Integr. Equat. Appl. 12, 271–280 (2000)

    MathSciNet  MATH  Google Scholar 

  127. M. Meehan, D. O’Regan, A note on singular Volterra functional-differential equations. Math. Proc. R. Ir. Acad. 100A, 73–84 (2000)

    MathSciNet  MATH  Google Scholar 

  128. M. Meehan, D. O’Regan, Positive solutions of Volterra integral equations using integral inequalities. J. Inequal. Appl. 7, 285–307 (2002)

    MathSciNet  MATH  Google Scholar 

  129. A. Nachman, A. Callegari, A nonlinear singular boundary value problem in the theory of pseudoplastic fluids. SIAM J. Appl. Math. 38, 275–281 (1980)

    MathSciNet  MATH  Google Scholar 

  130. M.Z. Nashed, J.S.W. Wong, Some variants of a fixed point theorem of Krasnosel’skii and applications to nonlinear integral equations. J. Math. Mech. 18, 767–777 (1969)

    MathSciNet  MATH  Google Scholar 

  131. P. Nowosad, On the integral equation \(\kappa f = \frac{1} {f}\) arising in a problem in communications. J. Math. Anal. Appl. 14, 484–492 (1966)

    MathSciNet  MATH  Google Scholar 

  132. R. Nussbaum, A periodicity threshold theorem for some nonlinear integral equations. SIAM J. Anal. 9, 356–376 (1978)

    MathSciNet  MATH  Google Scholar 

  133. D. O’Regan, Positive solutions to singular boundary value problems with at most linear growth. Appl. Anal. 49, 171–196 (1993)

    MathSciNet  MATH  Google Scholar 

  134. D. O’Regan, Existence results for nonlinear integral equations. J. Math. Anal. Appl. 192, 705–726 (1995)

    MathSciNet  MATH  Google Scholar 

  135. D. O’Regan, Existence results for nonlinear integral equations on the half line, in Qualitative Problems for Differential Equations and Control Theory (World Scientific Publishing, River Edge, 1995), pp. 121–131

    Google Scholar 

  136. D. O’Regan, A fixed point theorem for condensing operators and applications to Hammerstein integral equations in Banach spaces. Comput. Math. Appl. 30, 39–49 (1995)

    MATH  Google Scholar 

  137. D. O’Regan, Solutions in Orlicz spaces to Uryson integral equations. Proc. R. Ir. Acad. Sect. A 96, 67–78 (1996)

    MATH  Google Scholar 

  138. D. O’Regan, A topological approach to integral inclusions. Proc. R. Ir. Acad. Sect. A 97, 101–111 (1997)

    MATH  Google Scholar 

  139. D. O’Regan, Volterra and Urysohn integral equations in Banach spaces. J. Appl. Math. Stoch. Anal. 11, 449–464 (1998)

    MATH  Google Scholar 

  140. D. O’Regan, R.P. Agarwal, K. Perera, Nonlinear integral equations singular in the dependent variable. Appl. Math. Lett. 20, 1137–1141 (2007)

    MathSciNet  MATH  Google Scholar 

  141. D. O’Regan, M. Meehan, Existence Theory for Nonlinear Integral and Integrodifferential Equations (Kluwer, Dordrecht, 1998)

    MATH  Google Scholar 

  142. W. Orlicz, S. Szufla, On the structure of L ϕ-solution sets of integral equations in Banach spaces. Stud. Math. 77, 465–477 (1984)

    MathSciNet  MATH  Google Scholar 

  143. B.G. Pachpatte, Method of upper and lower solutions for nonlinear integral equations of Urysohn type. J. Integr. Equat. 6, 119–125 (1984)

    MATH  Google Scholar 

  144. R. Pluciennik, The superposition operator in Musielak–Orlicz spaces of vector-valued functions. Rend. Circ. Mat. Palermo (2) (Suppl. 14), 411–417 (1987)

    Google Scholar 

  145. I. Rachunková, M. Tvrdý, I. Vrkoč, Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems. J. Differ. Equat. 176, 445–469 (2001)

    MATH  Google Scholar 

  146. M.M. Rao, Z.D. Ren, Theory of Orlicz Spaces (Dekker, New York, 1991)

    MATH  Google Scholar 

  147. D.W. Reynolds, On linear singular Volterra integral equations of the second kind. J. Math. Anal. Appl. 103, 230–262 (1984)

    MathSciNet  MATH  Google Scholar 

  148. H. Smith, On periodic solutions of delay integral equations modelling epidemics and population growth, Ph.D. Dissertation, University of Iowa City, 1976

    Google Scholar 

  149. S. Solimini, On forced dynamical systems with a singularity of repulsive type. Nonlinear Anal. 14, 489–500 (1990)

    MathSciNet  MATH  Google Scholar 

  150. C.A. Stuart, Existence theorems for a class of nonlinear integral equations. Math. Z. 137, 49–66 (1974)

    MathSciNet  MATH  Google Scholar 

  151. P.J. Torres, Existence and uniqueness of elliptic periodic solutions of the Brillouin electron beam focusing system. Math. Meth. Appl. Sci. 23, 1139–1143 (2000)

    MATH  Google Scholar 

  152. P.J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem. J. Differ. Equat. 190, 643–662 (2003)

    MATH  Google Scholar 

  153. P.J. Torres, Weak singularities may help periodic solutions to exist. J. Differ. Equat. 232, 277–284 (2007)

    MATH  Google Scholar 

  154. J. Wang, W. Gao, Z. Zhang, Singular nonlinear boundary value problems arising in boundary layer theory. J. Math. Anal. Appl. 233, 246–256 (1999)

    MathSciNet  MATH  Google Scholar 

  155. R.L. Wheeden, A. Zygmund, Measure and Integral, Monographs and Textbooks in Pure and Applied Mathematics (Dekker, New York, 1977)

    Google Scholar 

  156. L.R. Williams, R.W. Leggett, Nonzero solutions of nonlinear integral equations modeling infectious disease. SIAM J. Anal. 13, 112–121 (1982)

    MathSciNet  MATH  Google Scholar 

  157. P.J.Y. Wong, Triple positive solutions of conjugate boundary value problems. Comput. Math. Appl. 36, 19–35 (1998)

    MATH  Google Scholar 

  158. P.J.Y. Wong, Solutions of constant signs of a system of Sturm–Liouville boundary value problems. Math. Comput. Model. 29, 27–38 (1999)

    MATH  Google Scholar 

  159. P.J.Y. Wong, A system of (n i ,p i ) boundary value problems with positive/nonpositive nonlinearities. J. Math. Anal. Appl. 243, 293–312 (2000)

    MathSciNet  MATH  Google Scholar 

  160. P.J.Y. Wong, Triple positive solutions of conjugate boundary value problems II. Comput. Math. Appl. 40, 537–557 (2000)

    MathSciNet  MATH  Google Scholar 

  161. P.J.Y. Wong, Sharp inequalities for solutions of multipoint boundary value problems. Math. Inequal. Appl. 3, 79–88 (2000)

    MathSciNet  MATH  Google Scholar 

  162. P.J.Y. Wong, Three fixed-sign solutions of system model with Sturm–Liouville type conditions. J. Math. Anal. Appl. 298, 120–145 (2004)

    MathSciNet  MATH  Google Scholar 

  163. P.J.Y. Wong, Constant-sign solutions for a system of third order generalized right focal problems. Nonlinear Anal. 63, 2153–2163 (2005)

    Google Scholar 

  164. P.J.Y. Wong, Eigenvalue characterization for a system of third order generalized right focal problems. Dyn. Syst. Appl. 15, 173–191 (2006)

    MATH  Google Scholar 

  165. P.J.Y. Wong, Triple fixed-sign solutions for a system of third-order generalized right focal boundary value problems, in Proceedings of the Conference on Differential & Difference Equations and Applications, USA (2006), pp. 1139–1148

    Google Scholar 

  166. P.J.Y. Wong, Multiple fixed-sign solutions for a system of generalized right focal problems with deviating arguments. J. Math. Anal. Appl. 323, 100–118 (2006)

    MathSciNet  MATH  Google Scholar 

  167. P.J.Y. Wong, On the existence of fixed-sign solutions for a system of generalized right focal problems with deviating arguments. Discrete Contin. Dyn. Syst. (Suppl.), 1042–1051 (2007)

    Google Scholar 

  168. P.J.Y. Wong, Eigenvalues of a system of generalized right focal problems with deviating arguments. J. Comput. Appl. Math. 218, 459–472 (2008)

    MathSciNet  MATH  Google Scholar 

  169. P.J.Y. Wong, Multiple fixed-sign solutions for a system of higher order three-point boundary value problems with deviating arguments. Comput. Math. Appl. 55, 516–534 (2008)

    MathSciNet  MATH  Google Scholar 

  170. P.J.Y. Wong, R.P. Agarwal, Eigenvalues of boundary value problems for higher order differential equations. Math. Probl. Eng. 2, 401–434 (1996)

    MATH  Google Scholar 

  171. P.J.Y. Wong, R.P. Agarwal, On eigenvalues and twin positive solutions of (n, p) boundary value problems. Funct. Differ. Equat. 4, 443–476 (1997)

    MathSciNet  MATH  Google Scholar 

  172. P.J.Y. Wong, R.P. Agarwal, Eigenvalue characterization for (n, p) boundary value problems. J. Aust. Math. Soc. (Ser. B) 39, 386–407 (1998)

    MathSciNet  MATH  Google Scholar 

  173. P.J.Y. Wong, R.P. Agarwal, On eigenvalue intervals and twin eigenfunctions of higher order boundary value problems. J. Comput. Appl. Math. 88, 15–43 (1998)

    MathSciNet  MATH  Google Scholar 

  174. P.J.Y. Wong, R.P. Agarwal, On two-point right focal eigenvalue problems. Z. Anal. Anwend. 17, 691–713 (1998)

    MathSciNet  MATH  Google Scholar 

  175. P.J.Y. Wong, R.P. Agarwal, Extension of continuous and discrete inequalities due to Eloe and Henderson. Nonlinear Anal. 34, 479–487 (1998)

    MathSciNet  MATH  Google Scholar 

  176. P.J.Y. Wong, R.P. Agarwal, Multiple positive solutions of two-point right focal boundary value problems. Math. Comput. Model. 28, 41–49 (1998)

    MathSciNet  MATH  Google Scholar 

  177. P.J.Y. Wong, R.P. Agarwal, Eigenvalues of Lidstone boundary value problems. Appl. Math. Comput. 104, 15–31 (1999)

    MathSciNet  MATH  Google Scholar 

  178. P.J.Y. Wong, R.P. Agarwal, Multiple solutions of generalized multipoint conjugate boundary value problems. Georgian Math. J. 6, 567–590 (1999)

    MathSciNet  MATH  Google Scholar 

  179. P.J.Y. Wong, R.P. Agarwal, Results and estimates on multiple solutions of Lidstone boundary value problems. Acta Math. Hung. 86, 137–168 (2000)

    MathSciNet  MATH  Google Scholar 

  180. P.J.Y. Wong, R.P. Agarwal, Generalized multipoint conjugate eigenvalue problems. Math. Comput. Model. 32, 733–745 (2000)

    MathSciNet  MATH  Google Scholar 

  181. P.J.Y. Wong, Y.C. Soh, Triple fixed-sign solutions in modelling a system with Hermite boundary conditions. J. Inequal. Appl. 4, 363–385 (2005)

    MathSciNet  Google Scholar 

  182. N. Yazidi, Monotone method for singular Neumann problem. Nonlinear Anal. 49, 589–602 (2002)

    MathSciNet  MATH  Google Scholar 

  183. K. Yosida, Functional Analysis, 5th edn. (Springer, Berlin, 1978)

    MATH  Google Scholar 

  184. M. Zhang, A relationship between the periodic and the Dirichlet BVPs of singular differential equations. Proc. R. Soc. Edinb. Sect. A 128, 1099–1114 (1998)

    MATH  Google Scholar 

  185. M. Zhang, Periodic solutions of equations of Emarkov–Pinney type. Adv. Nonlinear Stud. 6, 57–67 (2006)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Agarwal, R.P., O’Regan, D., Wong, P.J.Y. (2013). Systems of Higher Order Boundary Value Problems: Integrable Singularities. In: Constant-Sign Solutions of Systems of Integral Equations. Springer, Cham. https://doi.org/10.1007/978-3-319-01255-1_8

Download citation

Publish with us

Policies and ethics