Skip to main content

Sandpiles and Earthquakes

  • Chapter
  • First Online:
Imagine Math 3
  • 1570 Accesses

Abstract

This aerial photo of the San Andreas Fault is impressive (Fig. 1). The fault extends itself over roughly 1,300 km through California in the United States. It follows the boundary between the Pacific Plate and the North American Plate. The two tectonic plates move against each other (only few centimeters per year) slowly but firmly. Their motion affects rocks of the earth crust and deforms them elastically. Eventually, elastic stress gets so high that it exceeds rock strength, causes fractures and releases most of the accumulated energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. David K.L., SanAndreasFault.org, all about California’s defining geological feature, http://www.sanandreasfault.org/

  2. U.S. Geological Survey (USGS), The Parkfield, California, earthquake experiment, http://earthquake.usgs.gov/research/parkfield/index.php

  3. B. Gutenberg, R. Charles Francis, Magnitude and energy of earthquakes. Ann. Geophys. 1, 7–12 (2010). http://www.annalsofgeophysics.eu/index.php/annals/article/viewFile/4588/4656

    Google Scholar 

  4. Board of governors of the federal reserve system, survey of consumer finances. http://www.federalreserve.gov/econresdata/scf/scfindex.htm

  5. M.E.J. Newman, Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005). http://arxiv.org/pdf/cond-mat/0412004

    Article  Google Scholar 

  6. Aaron C., Power law distribution in empirical data, http://tuvalu.santafe.edu/~aaronc/powerlaws/data.htm

  7. Davies J.B., Sandström S., Shorrocks A., Wolff E.N., The world distribution of household wealth, UNU-WIDER, 2008, http://www.wider.unu.edu/publications/working-papers/discussion-papers/2008/en_GB/dp2008-03/

  8. C. Anderson, The long tail: why the future of business is selling less of more (Hyperion, California, 2006)

    Google Scholar 

  9. N.N. Taleb, The black swan: the impact of the highly improbable fragility (Random House Digital, New York, NY, 2010)

    Google Scholar 

  10. Brzezinski M., Do wealth distributions follow power laws? Evidence from ‘rich lists’. arXiv preprint arXiv:1304.0212 (2013). http://arxiv.org/pdf/1304.0212v1.pdf

  11. Internet Systems Consortium, ISC domain survey, http://www.isc.org/services/survey/

  12. Internet Society, History of the internet, http://www.internetsociety.org/internet/what-internet/history-internet

  13. Miniwatts Marketing Group, World internet users statistics usage and world population, http://www.internetworldstats.com/stats.htm

  14. Barrett L., The Opte project – maps, http://opte.org/maps

  15. G. Siganos, M. Faloutsos, P. Faloutsos, C. Faloutsos, Power laws and the AS-level internet topology. Networking IEEE/ACM Trans. 11(4), 514–524 (2003)

    Article  Google Scholar 

  16. R. Albert, J. Hawoong, B. Albert-László, Internet: diameter of the world-wide web. Nature 401(6749), 130–131 (1999). http://arxiv.org/pdf/cond-mat/9907038.pdf

    Article  Google Scholar 

  17. A.-L. Barabási, Scale-free networks: a decade and beyond. Science 325(5939), 412–413 (2009)

    Article  MathSciNet  Google Scholar 

  18. G. Narkounskaia, L.T. Donald, A cellular-automata, slider-block model for earthquakes I. Demonstration of chaotic behaviour for a low-order system. Geophys. J. Int. 111(2), 250–258 (1992). http://gji.oxfordjournals.org/content/111/2/250.full.pdf

    Article  Google Scholar 

  19. Hall-Wallace M.K., Can earthquakes be predicted? http://tremor.nmt.edu/activities/stick-slip/canpredict.htm

  20. U.S. Geological Survey (USGS), The Science of Earthquakes, http://earthquake.usgs.gov/learn/kids/eqscience.php

  21. P. Andriani, B. McKelvey, Beyond Gaussian averages: redirecting international business and management research toward extreme events and power laws. J. Int. Bus. Stud. 38(7), 1212–1230 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Todesco, G.M. (2015). Sandpiles and Earthquakes. In: Emmer, M. (eds) Imagine Math 3. Springer, Cham. https://doi.org/10.1007/978-3-319-01231-5_21

Download citation

Publish with us

Policies and ethics