Skip to main content

Alzheimer’s Disease and Other Neurodegenerative Disorders

  • Chapter
  • First Online:
Cerebrospinal Fluid in Clinical Neurology

Abstract

Traditionally, patients suffering from Alzheimer’s disease (AD) have been diagnosed according to clinical criteria, and a diagnosis has only been made in the dementia stage of the disease. Definite diagnosis required autopsy to confirm the neuropathological findings associated with AD, namely, extracellular depositions of amyloid β (Aβ) protein and intraneuronal neurofibrillary tangles consisting of hyperphosphorylated tau (P-tau) protein, together with gross cortical atrophy caused by neuronal degeneration and loss. These findings are reflected in the cerebrospinal fluid (CSF) of patients with AD. Numerous studies have shown that AD patients have lower levels of Aβ42 and higher levels of P-tau and total tau (T-tau) in CSF than cognitively healthy controls. In the new diagnostic criteria for AD, these CSF biomarkers are included as in vivo evidence of AD neuropathology together with positron emission tomography (PET) measurements of global cortical amyloid load. Further, AD is now divided into several disease stages, namely, preclinical AD and mild cognitive impairment and dementia due to AD. In this chapter, we review CSF biomarker characteristics for the various disease stages for AD and how to use them in the differentiation against other common neurodegenerative disorders. New candidate CSF biomarkers for AD are also presented, as well as a discussion on the standardization of biomarkers and their application in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agren-Wilsson A, Lekman A, Sjoberg W et al (2007) CSF biomarkers in the evaluation of idiopathic normal pressure hydrocephalus. Acta Neurol Scand 116(5):333–339

    CAS  PubMed  Google Scholar 

  • Ahn HJ, Seo SW, Chin J et al (2011) The cortical neuroanatomy of neuropsychological deficits in mild cognitive impairment and Alzheimer's disease: a surface-based morphometric analysis. Neuropsychologia 49(14):3931–3945

    PubMed  Google Scholar 

  • Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):270–279

    PubMed Central  PubMed  Google Scholar 

  • Alzheimer A (1987) About a peculiar disease of the cerebral cortex. By Alois Alzheimer, 1907 (Translated by L. Jarvik and H. Greenson). Alzheimer Dis Assoc Disord 1(1):3–8

    Google Scholar 

  • Andreasen N, Minthon L, Davidsson P et al (2001) Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for Alzheimer disease in clinical practice. Arch Neurol 58(3):373–379

    CAS  PubMed  Google Scholar 

  • Andreasson U, Lautner R, Schott JM et al (2014) CSF biomarkers for Alzheimer’s pathology and the effect size of APOE varepsilon4. Mol Psychiatry 19(2):148–149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bateman RJ, Xiong C, Benzinger TL et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367(9):795–804

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bennett DA, Wilson RS, Schneider JA et al (2002) Natural history of mild cognitive impairment in older persons. Neurology 59(2):198–205

    CAS  PubMed  Google Scholar 

  • Bian H, Van Swieten JC, Leight S et al (2008) CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology 70(19 Pt 2):1827–1835

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blennow K (2004) Cerebrospinal fluid protein biomarkers for Alzheimer’s disease. NeuroRx 1(2):213–225

    PubMed Central  PubMed  Google Scholar 

  • Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer’s disease. Lancet Neurol 2(10):605–613

    CAS  PubMed  Google Scholar 

  • Blennow K, Wallin A, Fredman P, Karlsson I, Gottfries CG, Svennerholm L (1990) Blood-brain barrier disturbance in patients with Alzheimer’s disease is related to vascular factors. Acta Neurol Scand 81(4):323–326

    CAS  PubMed  Google Scholar 

  • Blennow K, Wallin A, Agren H, Spenger C, Siegfried J, Vanmechelen E (1995) Tau protein in cerebrospinal fluid: a biochemical marker for axonal degeneration in Alzheimer disease? Mol Chem Neuropathol 26(3):231–245

    CAS  PubMed  Google Scholar 

  • Blennow K, Zetterberg H, Minthon L et al (2007) Longitudinal stability of CSF biomarkers in Alzheimer’s disease. Neurosci Lett 419(1):18–22

    CAS  PubMed  Google Scholar 

  • Blennow K, Hampel H, Weiner M, Zetterberg H (2010) Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 6(3):131–144

    CAS  PubMed  Google Scholar 

  • Bruggink KA, Jongbloed W, Biemans EA et al (2012) Amyloid-beta oligomer detection by enzyme-linked immunosorbent assay in cerebrospinal fluid and brain tissue. Anal Biochem 433(2):112–120

    PubMed  Google Scholar 

  • Bruggink KA, Jongbloed W, Biemans EA et al (2013) Amyloid-beta oligomer detection by ELISA in cerebrospinal fluid and brain tissue. Anal Biochem 433(2):112–120

    CAS  PubMed  Google Scholar 

  • Brys M, Pirraglia E, Rich K et al (2009) Prediction and longitudinal study of CSF biomarkers in mild cognitive impairment. Neurobiol Aging 30(5):682–690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buchhave P, Blennow K, Zetterberg H et al (2009) Longitudinal study of CSF biomarkers in patients with Alzheimer’s disease. PLoS One 4(7):e6294

    PubMed Central  PubMed  Google Scholar 

  • Buchhave P, Minthon L, Zetterberg H, Wallin AK, Blennow K, Hansson O (2012) Cerebrospinal fluid levels of beta-amyloid 1-42, but not of tau, are fully changed already 5 to 10 years before the onset of Alzheimer dementia. Arch Gen Psychiatry 69(1):98–106

    CAS  PubMed  Google Scholar 

  • Buerger K, Ewers M, Pirttila T et al (2006) CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain 129(Pt 11):3035–3041

    PubMed  Google Scholar 

  • Carrillo MC, Blennow K, Soares H et al (2013) Global standardization measurement of cerebral spinal fluid for Alzheimer’s disease: an update from the Alzheimer’s Association Global Biomarkers Consortium. Alzheimers Dement 9(2):137–140

    PubMed  Google Scholar 

  • Chalbot S, Zetterberg H, Blennow K, Fladby T, Grundke-Iqbal I, Iqbal K (2010) Cerebrospinal fluid secretory Ca2+-dependent phospholipase A2 activity: a biomarker of blood-cerebrospinal fluid barrier permeability. Neurosci Lett 478(3):179–183

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chartier-Harlin MC, Crawford F, Houlden H et al (1991) Early-onset alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353(6347):844–846

    Google Scholar 

  • Clark CM, Xie S, Chittams J et al (2003) Cerebrospinal fluid tau and beta-amyloid: how well do these biomarkers reflect autopsy-confirmed dementia diagnoses? Arch Neurol 60(12):1696–1702

    PubMed  Google Scholar 

  • Craig-Schapiro R, Fagan AM, Holtzman DM (2009) Biomarkers of Alzheimer’s disease. Neurobiol Dis 35(2):128–140

    CAS  PubMed Central  PubMed  Google Scholar 

  • Craig-Schapiro R, Perrin RJ, Roe CM et al (2010) YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer’s disease. Biol Psychiatry 68(10):903–912

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cruchaga C, Kauwe JS, Harari O et al (2013) GWAS of cerebrospinal fluid tau levels identifies risk variants for Alzheimer’s disease. Neuron 78(2):256–268

    CAS  PubMed Central  PubMed  Google Scholar 

  • Das P, Murphy MP, Younkin LH, Younkin SG, Golde TE (2001) Reduced effectiveness of Abeta1-42 immunization in APP transgenic mice with significant amyloid deposition. Neurobiol Aging 22(5):721–727

    CAS  PubMed  Google Scholar 

  • Davidsson P, Puchades M, Blennow K (1999) Identification of synaptic vesicle, pre- and postsynaptic proteins in human cerebrospinal fluid using liquid-phase isoelectric focusing. Electrophoresis 20(3):431–437

    CAS  PubMed  Google Scholar 

  • De Felice FG, Wu D, Lambert MP et al (2008) Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by A beta oligomers. Neurobiol Aging 29(9):1334–1347

    PubMed Central  PubMed  Google Scholar 

  • de Jong D, Jansen RW, Pijnenburg YA et al (2007) CSF neurofilament proteins in the differential diagnosis of dementia. J Neurol Neurosurg Psychiatry 78(9):936–938

    PubMed Central  PubMed  Google Scholar 

  • Fagan AM, Mintun MA, Mach RH et al (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Abeta42 in humans. Ann Neurol 59(3):512–519

    CAS  PubMed  Google Scholar 

  • Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM (2007) Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch Neurol 64(3):343–349

    PubMed  Google Scholar 

  • Fagan AM, Head D, Shah AR et al (2009) Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly. Ann Neurol 65(2):176–183

    CAS  PubMed Central  PubMed  Google Scholar 

  • Feneberg E, Steinacker P, Lehnert S et al (2014) Limited role of free TDP-43 as a diagnostic tool in neurodegenerative diseases. Amyotroph Lateral Scler Frontotemporal Degener 15:351–356

    CAS  PubMed  Google Scholar 

  • Fjell AM, Walhovd KB, Fennema-Notestine C et al (2010) Brain atrophy in healthy aging Is related to CSF levels of A{beta}1-42. Cereb Cortex 20:2069–2079

    PubMed Central  PubMed  Google Scholar 

  • Forsberg A, Engler H, Almkvist O et al (2008) PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 29(10):1456–1465

    CAS  PubMed  Google Scholar 

  • Fukumoto H, Tokuda T, Kasai T et al (2010) High-molecular-weight beta-amyloid oligomers are elevated in cerebrospinal fluid of Alzheimer patients. FASEB J 24(8):2716–2726

    CAS  PubMed  Google Scholar 

  • Gabelle A, Roche S, Geny C et al (2010) Correlations between soluble alpha/beta forms of amyloid precursor protein and Abeta38, 40, and 42 in human cerebrospinal fluid. Brain Res 1357:175–183

    CAS  PubMed  Google Scholar 

  • Gao CM, Yam AY, Wang X et al (2010) Abeta40 oligomers identified as a potential biomarker for the diagnosis of Alzheimer’s disease. PLoS One 5(12):e15725

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Alloza M, Subramanian M, Thyssen D et al (2009) Existing plaques and neuritic abnormalities in APP:PS1 mice are not affected by administration of the gamma-secretase inhibitor LY-411575. Mol Neurodegener 4:19

    PubMed Central  PubMed  Google Scholar 

  • Georganopoulou DG, Chang L, Nam JM et al (2005) Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci U S A 102(7):2273–2276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gisslen M, Hagberg L, Brew BJ, Cinque P, Price RW, Rosengren L (2007) Elevated cerebrospinal fluid neurofilament light protein concentrations predict the development of AIDS dementia complex. J Infect Dis 195(12):1774–1778

    CAS  PubMed  Google Scholar 

  • Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. Embo J 8(2):393–399

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gomez-Isla T, Hollister R, West H et al (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41(1):17–24

    CAS  PubMed  Google Scholar 

  • Grimmer T, Riemenschneider M, Forstl H et al (2009) Beta amyloid in Alzheimer’s disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid. Biol Psychiatry 65(11):927–934

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83(13):4913–4917

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gustafson DR, Skoog I, Rosengren L, Zetterberg H, Blennow K (2007) Cerebrospinal fluid beta-amyloid 1-42 concentration may predict cognitive decline in older women. J Neurol Neurosurg Psychiatry 78(5):461–464

    PubMed Central  PubMed  Google Scholar 

  • Hakala BE, White C, Recklies AD (1993) Human cartilage gp-39, a major secretory product of articular chondrocytes and synovial cells, is a mammalian member of a chitinase protein family. J Biol Chem 268(34):25803–25810

    CAS  PubMed  Google Scholar 

  • Hall S, Ohrfelt A, Constantinescu R et al (2012a) Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch Neurol 69(11):1445–1452

    PubMed  Google Scholar 

  • Hall S, Ohrfelt A, Constantinescu R et al (2012b) Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch Neurol 69:1445–1452, 1–8

    PubMed  Google Scholar 

  • Hampel H, Teipel SJ (2004) Total and phosphorylated tau proteins: evaluation as core biomarker candidates in frontotemporal dementia. Dement Geriatr Cogn Disord 17(4):350–354

    CAS  PubMed  Google Scholar 

  • Hampel H, Buerger K, Zinkowski R et al (2004) Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch Gen Psychiatry 61(1):95–102

    CAS  PubMed  Google Scholar 

  • Hampel H, Blennow K, Shaw LM, Hoessler YC, Zetterberg H, Trojanowski JQ (2010) Total and phosphorylated tau protein as biological markers of Alzheimer’s disease. Exp Gerontol 45(1):30–40

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hampel H, Lista S, Teipel SJ et al (2014) Perspective on future role of biological markers in clinical therapy trials of Alzheimer’s disease: a long-range point of view beyond 2020. Biochem Pharmacol 88(4):426–449

    CAS  PubMed  Google Scholar 

  • Handoko M, Grant M, Kuskowski M et al (2013) Correlation of specific amyloid-beta oligomers with tau in cerebrospinal fluid from cognitively normal older adults. JAMA Neurol 1–6

    Google Scholar 

  • Hansson O, Zetterberg H, Buchhave P, Londos E, Blennow K, Minthon L (2006) Association between CSF biomarkers and incipient Alzheimer’s disease in patients with mild cognitive impairment: a follow-up study. Lancet Neurol 5(3):228–234

    CAS  PubMed  Google Scholar 

  • Hardy J (2009) The amyloid hypothesis for Alzheimer’s disease: a critical reappraisal. J Neurochem 110(4):1129–1134

    CAS  PubMed  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256(5054):184–185

    CAS  PubMed  Google Scholar 

  • Hertze J, Minthon L, Zetterberg H, Vanmechelen E, Blennow K, Hansson O (2010) Evaluation of CSF biomarkers as predictors of Alzheimer’s disease: a clinical follow-up study of 4.7 years. J Alzheimers Dis 21(4):1119–1128

    CAS  PubMed  Google Scholar 

  • Hesse C, Rosengren L, Andreasen N et al (2001) Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci Lett 297(3):187–190

    CAS  PubMed  Google Scholar 

  • Hollak CE, van Weely S, van Oers MH, Aerts JM (1994) Marked elevation of plasma chitotriosidase activity. A novel hallmark of Gaucher disease. J clin invest 93(3):1288–1292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holsinger RM, McLean CA, Collins SJ, Masters CL, Evin G (2004) Increased beta-secretase activity in cerebrospinal fluid of Alzheimer’s disease subjects. Ann Neurol 55(6):898–899

    PubMed  Google Scholar 

  • Holsinger RM, Lee JS, Boyd A, Masters CL, Collins SJ (2006) CSF BACE1 activity is increased in CJD and Alzheimer disease versus [corrected] other dementias. Neurology 67(4):710–712

    CAS  PubMed  Google Scholar 

  • Hong Z, Shi M, Chung KA et al (2010) DJ-1 and alpha-synuclein in human cerebrospinal fluid as biomarkers of Parkinson’s disease. Brain 133(Pt 3):713–726

    PubMed Central  PubMed  Google Scholar 

  • Jack CR Jr, Knopman DS, Jagust WJ et al (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1):119–128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jack CR Jr, Albert MS, Knopman DS et al (2011) Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):257–262

    PubMed Central  PubMed  Google Scholar 

  • Jarrett JT, Berger EP, Lansbury PT Jr (1993) The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32(18):4693–4697

    CAS  PubMed  Google Scholar 

  • Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ (2011) Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration. Proc Natl Acad Sci U S A 108(14):5819–5824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johansson P, Mattsson N, Hansson O et al (2011a) Cerebrospinal fluid biomarkers for Alzheimer’s disease: diagnostic performance in a homogeneous mono-center population. J Alzheimers Dis 24(3):537–546

    PubMed  Google Scholar 

  • Johansson P, Johansson JO, Labrie F et al (2011b) Mild dementia is associated with increased adrenal secretion of cortisol and precursor sex steroids in women. Clin Endocrinol (Oxf) 75(3):301–308

    CAS  Google Scholar 

  • Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10(9):698–712

    CAS  PubMed  Google Scholar 

  • Kasuga K, Tokutake T, Ishikawa A et al (2010) Differential levels of alpha-synuclein, beta-amyloid42 and tau in CSF between patients with dementia with Lewy bodies and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 81(6):608–610

    PubMed  Google Scholar 

  • Kohnken R, Buerger K, Zinkowski R et al (2000) Detection of tau phosphorylated at threonine 231 in cerebrospinal fluid of Alzheimer’s disease patients. Neurosci Lett 287(3):187–190

    CAS  PubMed  Google Scholar 

  • Koopman K, Le Bastard N, Martin JJ, Nagels G, De Deyn PP, Engelborghs S (2009) Improved discrimination of autopsy-confirmed Alzheimer’s disease (AD) from non-AD dementias using CSF P-tau(181P). Neurochem Int 55(4):214–218

    CAS  PubMed  Google Scholar 

  • Landqvist Waldo M, Frizell Santillo A, Passant U et al (2013) Cerebrospinal fluid neurofilament light chain protein levels in subtypes of frontotemporal dementia. BMC Neurol 13:54

    PubMed Central  PubMed  Google Scholar 

  • Le Bastard N, Aerts L, Sleegers K et al (2013) Longitudinal stability of cerebrospinal fluid biomarker levels: fulfilled requirement for pharmacodynamic markers in Alzheimer’s disease. J Alzheimers Dis 33(3):807–822

    PubMed  Google Scholar 

  • Leinenbach A, Pannee J, Dülffer T et al (2014) Mass spectrometry-based candidate reference measurement procedure for quantification of Aβ42 in cerebrospinal fluid. Clin Chem 60:987–994

    CAS  PubMed  Google Scholar 

  • Levites Y, Das P, Price RW et al (2006) Anti-Abeta42- and anti-Abeta40-specific mAbs attenuate amyloid deposition in an Alzheimer disease mouse model. J Clin Invest 116(1):193–201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewczuk P, Kamrowski-Kruck H, Peters O et al (2010) Soluble amyloid precursor proteins in the cerebrospinal fluid as novel potential biomarkers of Alzheimer’s disease: a multicenter study. Mol Psychiatry 15(2):138–145

    CAS  PubMed  Google Scholar 

  • Lewczuk P, Popp J, Lelental N et al (2012) Cerebrospinal fluid soluble amyloid-beta protein precursor as a potential novel biomarkers of Alzheimer’s disease. J Alzheimers Dis 28(1):119–125

    CAS  PubMed  Google Scholar 

  • Li G, Sokal I, Quinn JF et al (2007) CSF tau/Abeta42 ratio for increased risk of mild cognitive impairment: a follow-up study. Neurology 69(7):631–639

    CAS  PubMed  Google Scholar 

  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and down syndrome. Proc Natl Acad Sci U S A 82(12):4245–4249

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mattsson N, Zetterberg H, Hansson O et al (2009) CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302(4):385–393

    CAS  PubMed  Google Scholar 

  • Mattsson N, Tabatabaei S, Johansson P et al (2011a) Cerebrospinal fluid microglial markers in Alzheimer’s disease: elevated chitotriosidase activity but lack of diagnostic utility. Neuromolecular Med 13(2):151–159

    CAS  PubMed  Google Scholar 

  • Mattsson N, Andreasson U, Persson S et al (2011b) The Alzheimer’s Association external quality control program for cerebrospinal fluid biomarkers. Alzheimers Dement 7(4):386–95 e6

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mattsson N, Rosen E, Hansson O et al (2012a) Age and diagnostic performance of Alzheimer disease CSF biomarkers. Neurology 78(7):468–476

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mattsson N, Portelius E, Rolstad S et al (2012b) Longitudinal cerebrospinal fluid biomarkers over four years in mild cognitive impairment. J Alzheimers Dis 30(4):767–778

    CAS  PubMed  Google Scholar 

  • May PC, Dean RA, Lowe SL et al (2011) Robust central reduction of amyloid-beta in humans with an orally available, non-peptidic beta-secretase inhibitor. J neurosci 31(46):16507–16516

    CAS  PubMed  Google Scholar 

  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34(7):939–944

    CAS  PubMed  Google Scholar 

  • Mollenhauer B, Cullen V, Kahn I et al (2008) Direct quantification of CSF alpha-synuclein by ELISA and first cross-sectional study in patients with neurodegeneration. Exp Neurol 213(2):315–325

    CAS  PubMed  Google Scholar 

  • Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, Sixel-Doring F, Trenkwalder C, Schlossmacher MG (2011) alpha-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. Lancet Neurol 10(3):230–240

    CAS  PubMed  Google Scholar 

  • Montine TJ, Beal MF, Cudkowicz ME et al (1999) Increased CSF F2-isoprostane concentration in probable AD. Neurology 52(3):562–565

    CAS  PubMed  Google Scholar 

  • Montine TJ, Kaye JA, Montine KS, McFarland L, Morrow JD, Quinn JF (2001) Cerebrospinal fluid abeta42, tau, and f2-isoprostane concentrations in patients with Alzheimer disease, other dementias, and in age-matched controls. Arch Pathol Lab Med 125(4):510–512

    CAS  PubMed  Google Scholar 

  • Montine TJ, Quinn J, Kaye J, Morrow JD (2007) F(2)-isoprostanes as biomarkers of late-onset alzheimer’s disease. J Mol Neurosci 33(1):114–119

    Google Scholar 

  • Moonis M, Swearer JM, Dayaw MP et al (2005) Familial Alzheimer disease: decreases in CSF Abeta42 levels precede cognitive decline. Neurology 65(2):323–325

    CAS  PubMed  Google Scholar 

  • Morrow JD, Roberts LJ (1997) The isoprostanes: unique bioactive products of lipid peroxidation. Prog Lipid Res 36(1):1–21

    CAS  PubMed  Google Scholar 

  • Mulder SD, van der Flier WM, Verheijen JH et al (2010) BACE1 activity in cerebrospinal fluid and its relation to markers of AD pathology. J Alzheimers Dis 20(1):253–260

    CAS  PubMed  Google Scholar 

  • Mullan M, Crawford F, Axelman K et al (1992) A pathogenic mutation for probable Alzheimer’s disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet 1(5):345–347

    CAS  PubMed  Google Scholar 

  • Noguchi-Shinohara M, Tokuda T, Yoshita M et al (2009) CSF alpha-synuclein levels in dementia with Lewy bodies and Alzheimer’s disease. Brain Res 1251:1–6

    CAS  PubMed  Google Scholar 

  • Olsson A, Hoglund K, Sjogren M et al (2003) Measurement of alpha- and beta-secretase cleaved amyloid precursor protein in cerebrospinal fluid from Alzheimer patients. Exp Neurol 183(1):74–80

    CAS  PubMed  Google Scholar 

  • Olsson B, Hertze J, Lautner R et al (2013) Microglial markers are elevated in the prodromal phase of Alzheimer’s disease and vascular dementia. J Alzheimers Dis 33(1):45–53

    CAS  PubMed  Google Scholar 

  • Ost M, Nylen K, Csajbok L et al (2006) Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology 67(9):1600–1604

    CAS  PubMed  Google Scholar 

  • Otto M, Wiltfang J, Tumani H et al (1997) Elevated levels of tau-protein in cerebrospinal fluid of patients with Creutzfeldt-Jakob disease. Neurosci Lett 225(3):210–212

    CAS  PubMed  Google Scholar 

  • Palmqvist S, Zetterberg H, Blennow K et al (2014) Accuracy of brain amyloid detection in clinical practice using cerebrospinal fluid Aβ42: a cross-validation study against amyloid PET in non-demented individuals. JAMA Neurol 71:1282–1289

    PubMed  Google Scholar 

  • Parnetti L, Tiraboschi P, Lanari A et al (2008) Cerebrospinal fluid biomarkers in Parkinson’s disease with dementia and dementia with Lewy bodies. Biol Psychiatry 64(10):850–855

    CAS  PubMed  Google Scholar 

  • Perl DP (2010) Neuropathology of Alzheimer’s disease. Mt Sinai J Med 77(1):32–42

    PubMed Central  PubMed  Google Scholar 

  • Perneczky R, Tsolakidou A, Arnold A et al (2011) CSF soluble amyloid precursor proteins in the diagnosis of incipient Alzheimer disease. Neurology 77(1):35–38

    CAS  PubMed  Google Scholar 

  • Perneczky R, Alexopoulos P, Alzheimer’s Disease Neuroimaging Initiative (2014) Cerebrospinal fluid BACE1 activity and markers of amyloid precursor protein metabolism and axonal degeneration in Alzheimer’s disease. Alzheimers Dement 10:S425–S429

    PubMed  Google Scholar 

  • Perrin RJ, Craig-Schapiro R, Malone JP et al (2011) Identification and validation of novel cerebrospinal fluid biomarkers for staging early Alzheimer’s disease. PLoS One 6(1):e16032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petersen RC (2003) Mild cognitive impairment: aging to Alzheimer’s disease. Oxford University Press, New York

    Google Scholar 

  • Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 256(3):183–194

    CAS  PubMed  Google Scholar 

  • Pitschke M, Prior R, Haupt M, Riesner D (1998) Detection of single amyloid beta-protein aggregates in the cerebrospinal fluid of Alzheimer’s patients by fluorescence correlation spectroscopy. Nat Med 4(7):832–834

    CAS  PubMed  Google Scholar 

  • Portelius E, Hansson SF, Tran AJ et al (2008) Characterization of tau in cerebrospinal fluid using mass spectrometry. J Proteome Res 7(5):2114–2120

    CAS  PubMed  Google Scholar 

  • Portelius E, Bogdanovic N, Gustavsson MK et al (2010) Mass spectrometric characterization of brain amyloid beta isoform signatures in familial and sporadic Alzheimer’s disease. Acta Neuropathol 120(2):185–193

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pratico D, Clark CM, Lee VM, Trojanowski JQ, Rokach J, FitzGerald GA (2000) Increased 8,12-iso-iPF2alpha-VI in Alzheimer’s disease: correlation of a noninvasive index of lipid peroxidation with disease severity. Ann Neurol 48(5):809–812

    CAS  PubMed  Google Scholar 

  • Raina P, Santaguida P, Ismaila A et al (2008) Effectiveness of cholinesterase inhibitors and memantine for treating dementia: evidence review for a clinical practice guideline. Ann Intern Med 148(5):379–397

    PubMed  Google Scholar 

  • Reesink FE, Lemstra AW, van Dijk KD et al (2010) CSF alpha-synuclein does not discriminate dementia with Lewy bodies from Alzheimer’s disease. J Alzheimers Dis 22(1):87–95

    CAS  PubMed  Google Scholar 

  • Reiman EM, Quiroz YT, Fleisher AS et al (2012) Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer’s disease in the presenilin 1 E280A kindred: a case-control study. Lancet Neurol 11(12):1048–1056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Renkema GH, Boot RG, Au FL et al (1998) Chitotriosidase, a chitinase, and the 39-kDa human cartilage glycoprotein, a chitin-binding lectin, are homologues of family 18 glycosyl hydrolases secreted by human macrophages. Eur J Biochem 251(1–2):504–509

    CAS  PubMed  Google Scholar 

  • Riemenschneider M, Wagenpfeil S, Vanderstichele H et al (2003) Phospho-tau/total tau ratio in cerebrospinal fluid discriminates Creutzfeldt-Jakob disease from other dementias. Mol Psychiatry 8(3):343–347

    CAS  PubMed  Google Scholar 

  • Ringman JM, Younkin SG, Pratico D et al (2008) Biochemical markers in persons with preclinical familial Alzheimer disease. Neurology 71(2):85–92

    CAS  PubMed  Google Scholar 

  • Ringman JM, Coppola G, Elashoff D et al (2012) Cerebrospinal fluid biomarkers and proximity to diagnosis in preclinical familial Alzheimer’s disease. Dement Geriatr Cogn Disord 33(1):1–5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roh JH, Lee JH (2014) Recent updates on subcortical ischemic vascular dementia. J stroke 16(1):18–26

    PubMed Central  PubMed  Google Scholar 

  • Rosén C, Andreasson U, Mattsson N et al (2012) Cerebrospinal fluid profiles of amyloid β-related biomarkers in Alzheimer’s disease. Neuromolecular Med 14(1):65–73

    PubMed  Google Scholar 

  • Rosen C, Andreasson U, Mattsson N et al (2012) Cerebrospinal fluid profiles of amyloid beta-related biomarkers in Alzheimer’s disease. Neuromolecular Med 14(1):65–73

    CAS  PubMed  Google Scholar 

  • Rosen C, Rosen H, Andreasson U et al (2014) Cerebrospinal fluid biomarkers in cardiac arrest survivors. Resuscitation 85(2):227–232

    CAS  PubMed  Google Scholar 

  • Rosén C, Andersson C, Andreasson U et al (2014) Increased levels of chitotriosidase and YKL-40 in CSF from patients with Alzheimer’s disease. Dement Geriatr Cogn Dis Extra 4:297–304

    PubMed Central  PubMed  Google Scholar 

  • Rosengren LE, Karlsson JE, Sjogren M, Blennow K, Wallin A (1999) Neurofilament protein levels in CSF are increased in dementia. Neurology 52(5):1090–1093

    CAS  PubMed  Google Scholar 

  • Samgard K, Zetterberg H, Blennow K, Hansson O, Minthon L, Londos E (2010) Cerebrospinal fluid total tau as a marker of Alzheimer’s disease intensity. Int J Geriatr Psychiatry 25(4):403–410

    PubMed  Google Scholar 

  • Santos AN, Ewers M, Minthon L et al (2012) Amyloid-beta oligomers in cerebrospinal fluid are associated with cognitive decline in patients with Alzheimer’s disease. J Alzheimers Dis 29(1):171–176

    CAS  PubMed  Google Scholar 

  • Schoonenboom NS, Reesink FE, Verwey NA et al (2012) Cerebrospinal fluid markers for differential dementia diagnosis in a large memory clinic cohort. Neurology 78(1):47–54

    CAS  PubMed  Google Scholar 

  • Schott JM, Bartlett JW, Fox NC, Barnes J, Alzheimer’s Disease Neuroimaging Initiative Initiative (2010) Increased brain atrophy rates in cognitively normal older adults with low cerebrospinal fluid Abeta1-42. Ann Neurol 68(6):825–834

    CAS  PubMed  Google Scholar 

  • Seelaar H, Rohrer JD, Pijnenburg YA, Fox NC, van Swieten JC (2011) Clinical, genetic and pathological heterogeneity of frontotemporal dementia: a review. J Neurol Neurosurg Psychiatry 82(5):476–486

    PubMed  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766

    CAS  PubMed  Google Scholar 

  • Seppala TT, Nerg O, Koivisto AM et al (2012) CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findings. Neurology 78(20):1568–1575

    CAS  PubMed  Google Scholar 

  • Seubert P, Vigo-Pelfrey C, Esch F et al (1992) Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 359(6393):325–327

    CAS  PubMed  Google Scholar 

  • Shankar GM, Li S, Mehta TH et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14(8):837–842

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shaw LM, Vanderstichele H, Knapik-Czajka M et al (2009) Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Ann Neurol 65(4):403–413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi M, Bradner J, Hancock AM et al (2011) Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann Neurol 69(3):570–580

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siemers ER (2009) How can we recognize “disease modification” effects? J Nutr Health Aging 13(4):341–343

    CAS  PubMed  Google Scholar 

  • Sjogren M, Blomberg M, Jonsson M et al (2001) Neurofilament protein in cerebrospinal fluid: a marker of white matter changes. J Neurosci Res 66(3):510–516

    CAS  PubMed  Google Scholar 

  • Skillback T, Zetterberg H, Blennow K, Mattsson N (2013) Cerebrospinal fluid biomarkers for Alzheimer disease and subcortical axonal damage in 5,542 clinical samples. Alzheimers Res Ther 5(5):47

    PubMed Central  PubMed  Google Scholar 

  • Skillback T, Rosen C, Asztely F, Mattsson N, Blennow K, Zetterberg H (2014) Diagnostic performance of cerebrospinal fluid total tau and phosphorylated tau in Creutzfeldt-Jakob disease: results from the Swedish Mortality Registry. JAMA Neuro 71(4):476–483

    Google Scholar 

  • Skoog I, Davidsson P, Aevarsson O, Vanderstichele H, Vanmechelen E, Blennow K (2003) Cerebrospinal fluid beta-amyloid 42 is reduced before the onset of sporadic dementia: a population-based study in 85-year-olds. Dement Geriatr Cogn Disord 15(3):169–176

    CAS  PubMed  Google Scholar 

  • Sperling RA, Aisen PS, Beckett LA et al (2011a) Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7(3):280–292

    PubMed Central  PubMed  Google Scholar 

  • Sperling RA, Jack CR Jr, Aisen PS (2011b) Testing the right target and right drug at the right stage. Sci transl med 3(111):111cm33

    PubMed Central  PubMed  Google Scholar 

  • Spies PE, Melis RJ, Sjogren MJ, Rikkert MG, Verbeek MM (2009) Cerebrospinal fluid alpha-synuclein does not discriminate between dementia disorders. J Alzheimers Dis 16(2):363–369

    CAS  PubMed  Google Scholar 

  • Spires-Jones TL, Stoothoff WH, de Calignon A, Jones PB, Hyman BT (2009) Tau pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci 32(3):150–159

    CAS  PubMed  Google Scholar 

  • Stomrud E, Hansson O, Blennow K, Minthon L, Londos E (2007) Cerebrospinal fluid biomarkers predict decline in subjective cognitive function over 3 years in healthy elderly. Dement Geriatr Cogn Disord 24(2):118–124

    CAS  PubMed  Google Scholar 

  • Strozyk D, Blennow K, White LR, Launer LJ (2003) CSF Abeta 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 60(4):652–656

    CAS  PubMed  Google Scholar 

  • Sunderland T, Linker G, Mirza N et al (2003) Decreased beta-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. Jama 289(16):2094–2103

    PubMed  Google Scholar 

  • Swardfager W, Lanctot K, Rothenburg L, Wong A, Cappell J, Herrmann N (2010) A meta-analysis of cytokines in Alzheimer’s disease. Biol Psychiatry 68(10):930–941

    CAS  PubMed  Google Scholar 

  • Tabaraud F, Leman JP, Milor AM et al (2012) Alzheimer CSF biomarkers in routine clinical setting. Acta Neurol Scand 125(6):416–423

    CAS  PubMed  Google Scholar 

  • Tapiola T, Alafuzoff I, Herukka SK et al (2009) Cerebrospinal fluid {beta}-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol 66(3):382–389

    PubMed  Google Scholar 

  • Terry RD, Masliah E, Salmon DP et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30(4):572–580

    CAS  PubMed  Google Scholar 

  • Thorsell A, Bjerke M, Gobom J et al (2010) Neurogranin in cerebrospinal fluid as a marker of synaptic degeneration in Alzheimer’s disease. Brain Res 1362:13–22

    CAS  PubMed  Google Scholar 

  • Tolboom N, van der Flier WM, Yaqub M et al (2009) Relationship of cerebrospinal fluid markers to 11C-PiB and 18F-FDDNP binding. J nucl med 50(9):1464–1470

    CAS  PubMed  Google Scholar 

  • Toledo JB, Cairns NJ, Da X et al (2013) Clinical and multimodal biomarker correlates of ADNI neuropathological findings. Acta neuropathol Commun 1(1):65

    PubMed Central  PubMed  Google Scholar 

  • Tumani H, Nolker G, Reiber H (1995) Relevance of cerebrospinal fluid variables for early diagnosis of neuroborreliosis. Neurology 45(9):1663–1670

    CAS  PubMed  Google Scholar 

  • van Dijk KD, Bidinosti M, Weiss A, Raijmakers P, Berendse HW, van de Berg WD (2014) Reduced alpha-synuclein levels in cerebrospinal fluid in Parkinson’s disease are unrelated to clinical and imaging measures of disease severity. Eur J Neurol 21(3):388–394

    PubMed  Google Scholar 

  • van Duijn CM, Hendriks L, Cruts M, Hardy JA, Hofman A, Van Broeckhoven C (1991) Amyloid precursor protein gene mutation in early-onset alzheimer’s disease. Lancet 337(8747):978

    Google Scholar 

  • van Harten AC, Visser PJ, Pijnenburg YA et al (2013) Cerebrospinal fluid Abeta42 is the best predictor of clinical progression in patients with subjective complaints. Alzheimers Dement 9(5):481–487

    PubMed  Google Scholar 

  • van Rossum IA, Vos SJ, Burns L et al (2012) Injury markers predict time to dementia in subjects with MCI and amyloid pathology. Neurology 79(17):1809–1816

    PubMed Central  PubMed  Google Scholar 

  • Vanmechelen E, Vanderstichele H, Davidsson P et al (2000) Quantification of tau phosphorylated at threonine 181 in human cerebrospinal fluid: a sandwich ELISA with a synthetic phosphopeptide for standardization. Neurosci Lett 285(1):49–52

    CAS  PubMed  Google Scholar 

  • Vanmechelen E, Van Kerschaver E, Blennow K, et al (2001) CSF-phospho-tau (181P) as a promising marker for discriminating Alzheimer’s disease from dementia with Lewy bodies, in alzheimer’s disease: advances in etiology, pathogenesis and therapeutics. John Wiley and Sons, England. pp 285–291

    Google Scholar 

  • Verheijen JH, Huisman LG, van Lent N et al (2006) Detection of a soluble form of BACE-1 in human cerebrospinal fluid by a sensitive activity assay. Clin Chem 52(6):1168–1174

    CAS  PubMed  Google Scholar 

  • Visser PJ, Verhey F, Knol DL et al (2009) Prevalence and prognostic value of CSF markers of Alzheimer’s disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study. Lancet Neurol 8(7):619–627

    PubMed  Google Scholar 

  • Wallin A, Sjogren M (2001) Cerebrospinal fluid cytoskeleton proteins in patients with subcortical white-matter dementia. Mech Ageing Dev 122(16):1937–1949

    CAS  PubMed  Google Scholar 

  • Wallin A, Blennow K, Rosengren L (1999) Cerebrospinal fluid markers of pathogenetic processes in vascular dementia, with special reference to the subcortical subtype. Alzheimer Dis Assoc Disord 13(Suppl 3):S102–S105

    PubMed  Google Scholar 

  • Wallin AK, Blennow K, Zetterberg H, Londos E, Minthon L, Hansson O (2010) CSF biomarkers predict a more malignant outcome in Alzheimer disease. Neurology 74(19):1531–1537

    CAS  PubMed  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV et al (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416(6880):535–539

    CAS  PubMed  Google Scholar 

  • Watabe-Rudolph M, Song Z, Lausser L et al (2012) Chitinase enzyme activity in CSF is a powerful biomarker of Alzheimer disease. Neurology 78(8):569–577

    CAS  PubMed  Google Scholar 

  • Yang T, Hong S, O’Malley T, Sperling RA, Walsh DM, Selkoe DJ (2013) New ELISAs with high specificity for soluble oligomers of amyloid beta-protein detect natural Abeta oligomers in human brain but not CSF. Alzheimers Dement 9(2):99–112

    PubMed Central  PubMed  Google Scholar 

  • Zempel H, Thies E, Mandelkow E, Mandelkow EM (2010) Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J neurosci 30(36):11938–11950

    CAS  PubMed  Google Scholar 

  • Zetterberg H, Andreasen N, Blennow K (2004) Increased cerebrospinal fluid levels of transforming growth factor-beta1 in Alzheimer’s disease. Neurosci Lett 367(2):194–196

    CAS  PubMed  Google Scholar 

  • Zetterberg H, Hietala MA, Jonsson M et al (2006) Neurochemical aftermath of amateur boxing. Arch Neurol 63(9):1277–1280

    PubMed  Google Scholar 

  • Zetterberg H, Pedersen M, Lind K et al (2007) Intra-individual stability of CSF biomarkers for Alzheimer’s disease over two years. J Alzheimers Dis 12(3):255–260

    CAS  PubMed  Google Scholar 

  • Zetterberg H, Andreasson U, Hansson O et al (2008) Elevated cerebrospinal fluid BACE1 activity in incipient Alzheimer disease. Arch Neurol 65(8):1102–1107

    PubMed  Google Scholar 

  • Zetterberg H, Andreasson U, Blennow K (2009) CSF antithrombin III and disruption of the blood-brain barrier. J Clin Oncol 27(13):2302–2303; author reply 3–4

    PubMed  Google Scholar 

  • Zetterberg H, Mattsson N, Blennow K (2010) Cerebrospinal fluid analysis should be considered in patients with cognitive problems. Int J Alzheimers Dis 2010:163065

    PubMed Central  PubMed  Google Scholar 

  • Zhong Z, Ewers M, Teipel S et al (2007) Levels of beta-secretase (BACE1) in cerebrospinal fluid as a predictor of risk in mild cognitive impairment. Arch Gen Psychiatry 64(6):718–726

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoffer Rosén .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rosén, C., Zetterberg, H., Blennow, K. (2015). Alzheimer’s Disease and Other Neurodegenerative Disorders. In: Deisenhammer, F., Sellebjerg, F., Teunissen, C., Tumani, H. (eds) Cerebrospinal Fluid in Clinical Neurology. Springer, Cham. https://doi.org/10.1007/978-3-319-01225-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01225-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01224-7

  • Online ISBN: 978-3-319-01225-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics