Skip to main content

Background

  • Chapter
  • First Online:
  • 330 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Nuclear physics deals with the study of the fundamental properties of nuclear matter and the character of the strong nuclear force. By the 1960s the concept of nuclear matter had been extended from the nucleons making up atomic nuclei to a vast number of strongly interacting particles known as hadrons.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This symmetry is only approximate as it is broken explicitly by the quark masses. Thus the pions are pseudo-Goldstone bosons.

  2. 2.

    In this section the generator/adjoint indices are denoted by capital, Roman script, as a superscript with the summation over repeated indices is implied. The fundamental, matrix multiplication indices are denoted by lower case, Roman script appearing as subscripts. The Lorentz indices are indicated by Greek characters and the standard Einstein summation convention applies.

References

  1. M. Han, Y. Nambu, Three triplet model with double \(SU(3)\) symmetry. Phys. Rev. 139, B1006–B1010 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  2. M. Gell-Mann, Symmetries of baryons and mesons. Phys. Rev. 125, 1067–1084 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. M. Gell-Mann, A schematic model of Baryons and Mesons. Phys. Lett. 8, 214–215 (1964)

    Article  ADS  Google Scholar 

  4. J.J.J. Kokkedee, The quark model, CERN-TH-757 (1967)

    Google Scholar 

  5. G. Zweig, An \(SU_3\) model for strong interaction symmetry and its breaking: Part I, CERN-TH-401 (1964)

    Google Scholar 

  6. G. Zweig, An \(SU_3\) model for strong interaction symmetry and its breaking: Part II, CERN-TH-412 (1964)

    Google Scholar 

  7. V. Barnes et al., Observation of a hyperon with strangeness \(-3\). Phys. Rev. Lett. 12, 204–206 (1964)

    Article  ADS  Google Scholar 

  8. J. Bjorken, Asymptotic sum rules at infinite momentum. Phys. Rev. 179, 1547–1553 (1969)

    Article  ADS  Google Scholar 

  9. E.D. Bloom et al., High-energy inelastic ep scattering at 6-Degrees and 10-Degrees. Phys. Rev. Lett. 23, 930–934 (1969)

    Article  ADS  Google Scholar 

  10. J.I. Friedman, H.W. Kendall, Deep inelastic electron scattering. Ann. Rev. Nucl. Part. Sci. 22, 203–254 (1972)

    Article  ADS  Google Scholar 

  11. J. Bjorken, E.A. Paschos, Inelastic Electron-Proton and gamma-Proton scattering, and the structure of the Nucleon. Phys. Rev. 185, 1975–1982 (1969)

    Article  ADS  Google Scholar 

  12. R.P. Feynman, Very high-energy collisions of hadrons. Phys. Rev. Lett. 23, 1415–1417 (1969)

    Article  ADS  Google Scholar 

  13. R.P. Feynman, The behavior of hadron collisions at extreme energies. Invited paper at the Third Conference on High-Energy Collisions (Stony Brook, New York, Sep 1969), pp. 5–6

    Google Scholar 

  14. M. Gell-Mann, F. Low, Quantum electrodynamics at small distances. Phys. Rev. 95, 1300–1312 (1954)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. K.G. Wilson, Non-Lagrangian models of current algebra. Phys. Rev. 179, 1499–1512 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  16. C.G. Callan, Broken scale invariance in scalar field theory. Phys. Rev. D 2, 1541–1547 (1970)

    Article  ADS  Google Scholar 

  17. K. Symanzik, Small distance behavior in field theory and power counting. Commun. Math. Phys. 18, 227–246 (1970)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. C.G. Callan, D.J. Gross, Bjorken scaling in quantum field theory. Phys. Rev. D 8, 4383–4394 (1973)

    Article  ADS  Google Scholar 

  19. N.H. Christ, B. Hasslacher, A.H. Mueller, Light cone behavior of perturbation theory. Phys. Rev. D 6, 3543 (1972)

    Article  ADS  Google Scholar 

  20. C.-N. Yang, R.L. Mills, Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191–195 (1954)

    Article  MathSciNet  ADS  Google Scholar 

  21. H. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349 (1973)

    Article  ADS  Google Scholar 

  22. D. Gross, F. Wilczek, Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973)

    Article  ADS  Google Scholar 

  23. D. Gross, F. Wilczek, Asymptotically free gauge theories. 1. Phys. Rev. D 8, 3633–3652 (1973)

    Article  ADS  Google Scholar 

  24. D. Gross, F. Wilczek, Asymptotically free gauge theories. 2. Phys. Rev. D 9, 980–993 (1974)

    Article  ADS  Google Scholar 

  25. H. Politzer, Asymptotic freedom: an approach to strong interactions. Phys. Rept. 14, 129–180 (1974)

    Article  ADS  Google Scholar 

  26. H. Georgi, H. Politzer, Electroproduction scaling in an asymptotically free theory of strong interactions. Phys. Rev. D 9, 416–420 (1974)

    Article  ADS  Google Scholar 

  27. S. Drell, T. Yan, Massive Lepton pair production in Hadron-Hadron collisions at high-energies. Phys. Rev. Lett. 25, 316–320 (1970)

    Article  ADS  Google Scholar 

  28. CTEQ Collaboration, Handbook of perturbative QCD; version 1.1: Sept. 1994. Rev. Mod. Phys. (1994)

    Google Scholar 

  29. K. Nakamura et al., Review of particle physics. J. Phys. G 37, 075021 (2010)

    Article  ADS  Google Scholar 

  30. C.G. Callan, D.J. Gross, High-energy electroproduction and the constitution of the electric current. Phys. Rev. Lett. 22, 156–159 (1969)

    Article  ADS  Google Scholar 

  31. A. Bodek et al., Experimental studies of the Neutron and Proton electromagnetic structure functions. Phys. Rev. D 20, 1471–1552 (1979)

    Article  ADS  Google Scholar 

  32. V. Ezhela, S. Lugovsky, O. Zenin, Hadronic part of the muon g-2 estimated on the \(\sigma ^{2003}_{\text{ tot }} (e^{+}e^{-}\rightarrow hadrons)\) evaluated data compilation. arXiv:hep-ph/0312114

    Google Scholar 

  33. G. Hanson et al., Evidence for jet structure in hadron production by \(e^{+}e^{-}\) annihilation. Phys. Rev. Lett. 35, 1609–1612 (1975)

    Article  ADS  Google Scholar 

  34. S.L. Wu, \(e^{+}e^{-}\) Physics at PETRA: the first 5-years. Phys. Rept. 107, 59–324 (1984)

    Article  ADS  Google Scholar 

  35. S. Bethke, The 2009 world average of \(\alpha _\text{ S }\). Eur. Phys. J. C 64, 689–703 (2009). arXiv:0908.1135

    Google Scholar 

  36. L. Faddeev, V. Popov, Feynman diagrams for the Yang-Mills field. Phys. Lett. B 25, 29–30 (1967)

    Article  ADS  Google Scholar 

  37. G.F. Sterman, S. Weinberg, Jets from quantum chromodynamics. Phys. Rev. Lett. 39, 1436 (1977)

    Article  ADS  Google Scholar 

  38. Y.L. Dokshitzer, D. Diakonov, S. Troian, Hard processes in quantum chromodynamics. Phys. Rept. 58, 269–395 (1980)

    Article  ADS  Google Scholar 

  39. G.F. Sterman, Mass divergences in annihilation processes. 1. Origin and nature of divergences in cut vacuum polarization diagrams. Phys. Rev. D 17, 2773 (1978)

    Article  ADS  Google Scholar 

  40. K.G. Wilson, Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974)

    Article  ADS  Google Scholar 

  41. H.B. Nielsen, M. Ninomiya, Absence of neutrinos on a lattice. 1. Proof by homotopy theory. Nucl. Phys. B185, 20 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  42. H.B. Nielsen, M. Ninomiya, No go theorem for regularizing chiral fermions. Phys. Lett. B105, 219 (1981)

    Article  ADS  Google Scholar 

  43. J.B. Kogut, L. Susskind, Hamiltonian formulation of Wilson’s lattice gauge theories. Phys. Rev. D11, 395 (1975)

    ADS  Google Scholar 

  44. K. Symanzik, Continuum limit and improved action in lattice theories. 1. Principles and \(\phi ^4\) theory. Nucl. Phys. B226, 187 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  45. A. Bazavov et al., Nonperturbative QCD simulations with \(2+1\) flavors of improved staggered quarks. Rev. Mod. Phys. 82, 1349–1417 (2010). arXiv:0903.3598

    Google Scholar 

  46. Y. Nambu, Lectures at the copenhagen, symposium (1970)

    Google Scholar 

  47. T. Goto, Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model. Prog. Theor. Phys. 46, 1560–1569 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. B. Andersson et al., Parton fragmentation and string dynamics. Phys. Rept. 97, 31–145 (1983)

    Article  ADS  Google Scholar 

  49. T. Sjostrand, High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4. Comput. Phys. Commun. 82, 74–90 (1994)

    Article  ADS  Google Scholar 

  50. J.C. Collins, D.E. Soper, G.F. Sterman, Factorization for short distance Hadron-Hadron scattering. Nucl. Phys. B261, 104 (1985)

    Article  ADS  Google Scholar 

  51. J.C. Collins, D.E. Soper, G.F. Sterman, Soft gluons and factorization. Nucl. Phys. B308, 833 (1988)

    Article  ADS  Google Scholar 

  52. J.C. Collins, D.E. Soper, G.F. Sterman, Factorization of hard processes in QCD. Adv. Ser. Direct. High Energy Phys. 5, 1–91 (1988). arXiv:hep-ph/0409313

    Google Scholar 

  53. S.J. Brodsky, D.S. Hwang, I. Schmidt, Final-state interactions and single-spin asymmetries in semi-inclusive deep inelastic scattering. Phys. Lett. B530, 99–107 (2002). arXiv:hep-ph/0201296

    Google Scholar 

  54. S.J. Brodsky et al., Structure functions are not parton probabilities. Phys. Rev. D 65, 114025 (2002). arXiv:hep-ph/0104291

    Google Scholar 

  55. J.C. Collins, Leading twist single transverse-spin asymmetries: Drell-Yan and deep inelastic scattering. Phys. Lett. B 536, 43–48 (2002). arXiv:hep-ph/0204004

    Google Scholar 

  56. D. Boer, P. Mulders, F. Pijlman, Universality of \(T\)-odd effects in single spin and azimuthal asymmetries. Nucl. Phys. B 667, 201–241 (2003). arXiv:hep-ph/0303034

    Google Scholar 

  57. J.C. Collins, D.E. Soper, Back-to-back jets in QCD. Nucl. Phys. B 193, 381 (1981)

    Article  ADS  Google Scholar 

  58. J.C. Collins, D.E. Soper, G.F. Sterman, Transverse momentum distribution in Drell-Yan Pair and W and Z Boson production. Nucl. Phys. B 250, 199 (1985)

    Article  ADS  Google Scholar 

  59. J. Collins, J.-W. Qiu, \(k_{\text{ t }}\) factorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions. Phys. Rev. D 75, 114014 (2007). arXiv:0705.2141

    Google Scholar 

  60. T.C. Rogers, P.J. Mulders, No generalized transverse momentum dependent factorization in the hadroproduction of high transverse momentum hadrons. Phys. Rev. D 81, 094006 (2010). arXiv:1001.2977

    Google Scholar 

  61. G. Altarelli, G. Parisi, Asymptotic Freedom in Parton Language. Nucl. Phys. B 126, 298 (1977)

    Article  ADS  Google Scholar 

  62. V. Gribov, L. Lipatov, Deep inelastic ep scattering in perturbation theory. Sov. J. Nucl. Phys. 15, 438–450 (1972)

    Google Scholar 

  63. Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and \(e^{+}e^{-}\) annihilation by perturbation theory in quantum chromodynamics. Sov. Phys. JETP 46, 641–653 (1977)

    Google Scholar 

  64. A.H. Mueller, Multiplicity and Hadron distributions in QCD jets: nonleading terms. Nucl. Phys. B B213, 85 (1983)

    Article  ADS  Google Scholar 

  65. Y.L. Dokshitzer, V.A. Khoze, S. Troian, Inclusive particle spectra from QCD cascades. Int. J. Mod. Phys. A 7, 1875–1906 (1992)

    Article  ADS  Google Scholar 

  66. Y.L. Dokshitzer, V.A. Khoze, A.H. Mller, S.I. Troyan, Basics of perturbative QCD (Basics of. Ed. Frontires, Gif-sur-Yvette, 1991)

    Google Scholar 

  67. V.A. Khoze, W. Ochs, Perturbative QCD approach to multiparticle production. Int. J. Mod. Phys. A 12, 2949–3120 (1997). arXiv:hep-ph/9701421

    Google Scholar 

  68. C. Fong, B. Webber, One and two particle distributions at small x in QCD jets. Nucl. Phys. B355, 54–81 (1991)

    Article  ADS  Google Scholar 

  69. Y.L. Dokshitzer, V.S. Fadin, V.A. Khoze, Double logs of perturbative QCD for parton jets and soft Hadron spectra. Z. Phys. C 15, 325 (1982)

    Google Scholar 

  70. D. de Florian, R. Sassot, M. Stratmann, Global analysis of fragmentation functions for protons and charged hadrons. Phys. Rev. D 76, 074033 (2007). arXiv:0707.1506

    Google Scholar 

  71. D. de Florian, R. Sassot, M. Stratmann, Global analysis of fragmentation functions for pions and kaons and their uncertainties. Phys. Rev. D 75, 114010 (2007). arXiv:hep-ph/0703242

    Google Scholar 

  72. M. Hirai, S. Kumano, T.-H. Nagai, K. Sudoh, Determination of fragmentation functions and their uncertainties. Phys. Rev. D 75, 094009 (2007). arXiv:hep-ph/0702250

    Google Scholar 

  73. B. Webber, A QCD model for jet fragmentation including Soft Gluon interference. Nucl. Phys. B238, 492 (1984)

    Article  ADS  Google Scholar 

  74. G. Marchesini et al., HERWIG: a Monte Carlo event generator for simulating hadron emission reactions with interfering gluons. Version 5.1. Comput. Phys. Commun. 67, 465–508(1992) (April 1991)

    Google Scholar 

  75. S. Catani et al., QCD matrix elements + parton showers, JHEP 0111 063 (2001). arXiv:hep-ph/0109231

    Google Scholar 

  76. J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions. Eur. Phys. J. C 53, 473–500 (2008). arXiv:0706.2569

    Google Scholar 

  77. T. Gleisberg et al., SHERPA 1. alpha: a proof of concept version. JHEP 0402, 056. arXiv:hep-ph/0311263

    Google Scholar 

  78. M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau, A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions. JHEP 0307, 001 (2003). arXiv:hep-ph/0206293

    Google Scholar 

  79. J.E. Huth et al., Toward a standardization of jet definitions, FERMILAB-CONF-90-249-E (1990)

    Google Scholar 

  80. S.D. Ellis, Z. Kunszt, D.E. Soper, The one jet inclusive cross-section at order \(\alpha _{\text{ S }}^3\) quarks and gluons. Phys. Rev. Lett. 64, 2121 (1990)

    Article  ADS  Google Scholar 

  81. G.P. Salam, Towards jetography. Eur. Phys. J. C 67, 637–686 (2010). arXiv:0906.1833

    Google Scholar 

  82. M. Cacciari, G.P. Salam, G. Soyez, The anti-\(k_{\text{ t }}\) jet clustering algorithm. JHEP 0804, 063 (2008). arXiv:0802.1189

    Google Scholar 

  83. JADE Collaboration, Experimental studies on multi-jet production in \(e^{+}e^{-}\) annihilation at PETRA energies. Z. Phys. C 33, 23 (1986)

    Google Scholar 

  84. JADE Collaboration, Experimental investigation of the energy dependence of the strong coupling strength. Phys. Lett. B 213, 235 (1988)

    Google Scholar 

  85. S. Catani et al., New clustering algorithm for multi-jet cross-sections in \(e^{+}e^{-}\) annihilation. Phys. Lett. B 269, 432–438 (1991)

    Article  ADS  Google Scholar 

  86. S. Catani et al., Longitudinally invariant \(k_{\text{ t }}\) clustering algorithms for hadron hadron collisions. Nucl. Phys. B 406, 187–224 (1993)

    Article  ADS  Google Scholar 

  87. S.D. Ellis, D.E. Soper, Successive combination jet algorithm for hadron collisions. Phys. Rev. D 48, 3160–3166 (1993). arXiv:hep-ph/9305266

    Google Scholar 

  88. M. Cacciari, G.P. Salam, Dispelling the \(N^{3}\) myth for the \(k_{\text{ t }}\) jet-finder. Phys. Lett. B 641, 57–61 (2006). arXiv:hep-ph/0512210

    Google Scholar 

  89. Y.L. Dokshitzer et al., Better jet clustering algorithms, JHEP 9708, 001 (1997). arXiv:hep-ph/9707323

    Google Scholar 

  90. M. Wobisch, T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering. arXiv:hep-ph/9907280

    Google Scholar 

  91. ATLAS Collaboration, Jet Reconstruction Performance. ATL-PHYS-PUB-2009-012 (2009). http://cdsweb.cern.ch/record/1167330/

  92. T. Kluge, K. Rabbertz, M. Wobisch, FastNLO: Fast pQCD calculations for PDF fits. arXiv:hep-ph/0609285

    Google Scholar 

  93. E. Fermi, High-energy nuclear events. Prog. Theor. Phys. 5, 570–583 (1950)

    Article  MathSciNet  ADS  Google Scholar 

  94. L. Landau, On the multiparticle production in high-energy collisions. Izv. Akad. Nauk Ser. Fiz. 17, 51–64 (1953)

    Google Scholar 

  95. R. Hagedorn, Statistical thermodynamics of strong interactions at high-energies. Nuovo Cim. Suppl. 3, 147–186 (1965)

    Google Scholar 

  96. J.C. Collins, M. Perry, Superdense matter: neutrons or asymptotically free quarks? Phys. Rev. Lett. 34, 1353 (1975)

    Article  ADS  Google Scholar 

  97. E.V. Shuryak, Quantum chromodynamics and the theory of superdense matter. Phys. Rept. 61, 71–158 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  98. E.V. Shuryak, Two scales and phase transitions in quantum chromodynamics. Phys. Lett. B 107, 103 (1981)

    Article  ADS  Google Scholar 

  99. M. LeBellac, Thermal Field Theory (Cambridge University Press, Cambridge, 1996)

    Book  Google Scholar 

  100. J.-P. Blaizot, E. Iancu, The quark gluon plasma: collective dynamics and hard thermal loops. Phys. Rept. 359, 355–528 (2002). arXiv:hep-ph/0101103

    Google Scholar 

  101. A. Bazavov et al., Equation of state and QCD transition at finite temperature. Phys. Rev. D 80, 014504 (2009). arXiv:0903.4379

    Google Scholar 

  102. E. Braaten, R.D. Pisarski, Soft amplitudes in hot gauge theories: a general analysis. Nucl. Phys. B 337, 569 (1990)

    Article  ADS  Google Scholar 

  103. E. Braaten, R.D. Pisarski, Simple effective Lagrangian for hard thermal loops. Phys. Rev. D 45, 1827–1830 (1992)

    Article  ADS  Google Scholar 

  104. H.A. Weldon, Covariant calculations at finite temperature: the relativistic plasma. Phys. Rev. D 26, 1394 (1982)

    Article  ADS  Google Scholar 

  105. A.D. Linde, Infrared problem in thermodynamics of the Yang-Mills Gas. Phys. Lett. B 96, 289 (1980)

    Article  ADS  Google Scholar 

  106. D.J. Gross, R.D. Pisarski, L.G. Yaffe, QCD and instantons at finite temperature. Rev. Mod. Phys. 53, 43 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  107. T. Lee, G. Wick, Vacuum stability and vacuum excitation in a spin 0 field theory. Phys. Rev. D 9, 2291 (1974)

    Article  ADS  Google Scholar 

  108. T.D. Lee, Abnormal nuclear states and vacuum excitations. Rev. Mod. Phys. 47, 267 (1975)

    Article  ADS  Google Scholar 

  109. K. Rajagopal, F. Wilczek, The condensed matter physics of QCD. arXiv:hep-ph/0011333

    Google Scholar 

  110. J. Bjorken, Highly relativistic nucleus-nucleus collisions: the central rapidity region. Phys. Rev. D 27, 140–151 (1983)

    Article  ADS  Google Scholar 

  111. PHENIX Collaboration, Measurement of the mid-rapidity transverse energy distribution from \(\sqrt{s_{\text{ NN }}}=130\) GeV Au+Au collisions at RHIC. Phys. Rev. Lett. 87, 052301 (2001). arXiv:nucl-ex/0104015

    Google Scholar 

  112. J.M. Maldacena, The large \(N\) limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998). arXiv:hep-th/9711200

    Google Scholar 

  113. O. Aharony et al., Large \(N\) field theories, string theory and gravity. Phys. Rept. 323, 183–386 (2000). arXiv:hep-th/9905111

    Google Scholar 

  114. P. Danielewicz, M. Gyulassy, Dissipative phenomena in quark gluon plasmas. Phys. Rev. D 31, 53–62 (1985)

    Article  ADS  Google Scholar 

  115. G. Policastro, D. Son, A. Starinets, The shear viscosity of strongly coupled \(N=4\) supersymmetric Yang-Mills plasma. Phys. Rev. Lett. 87, 081601 (2001). arXiv:hep-th/0104066

    Google Scholar 

  116. P. Kovtun, D.T. Son, A.O. Starinets, Holography and hydrodynamics: diffusion on stretched horizons. JHEP 0310, 064 (2003). arXiv:hep-th/0309213

    Google Scholar 

  117. R.J. Glauber, in Lectures in Theoretical Physics, ed. by W.E. Brittin, L.G. Dunham, vol. 1 (Interscience, New York, 1959), pp. 315

    Google Scholar 

  118. R. Glauber, G. Matthiae, High-energy scattering of protons by nuclei. Nucl. Phys. B 21, 135–157 (1970)

    ADS  Google Scholar 

  119. W. Czyz, L. Maximon, High-energy, small angle elastic scattering of strongly interacting composite particles. Annals Phys. 52, 59–121 (1969)

    Article  ADS  Google Scholar 

  120. M.L. Miller et al., Glauber modeling in high energy nuclear collisions. Ann. Rev. Nucl. Part. Sci. 57, 205–243 (2007). arXiv:nucl-ex/0701025

    Google Scholar 

  121. H. De Vries, C.W. De Jager, C. De Vries, Nuclear charge and magnetization density distribution parameters from elastic electron scattering. Atom. Data Nucl. Data Tabl. 36, 495–536 (1987)

    Article  ADS  Google Scholar 

  122. A. Bialas, M. Bleszynski, W. Czyz, Multiplicity distributions in nucleus-nucleus collisions at high-energies. Nucl. Phys. B 111, 461 (1976)

    Article  ADS  Google Scholar 

  123. J. Cronin et al., Production of Hadrons with large transverse momentum at 200 GeV, 300 GeV, and 400 GeV. Phys. Rev. D 11, 3105 (1975)

    Article  ADS  Google Scholar 

  124. D. Antreasyan et al., Production of hadrons at large transverse momentum in 200 GeV, 300 GeV and 400 GeV pp and p+n collisions. Phys. Rev. D 19, 764–778 (1979)

    Article  ADS  Google Scholar 

  125. J.W. Qiu, I. Vitev, Coherent QCD multiple scattering in proton-nucleus collisions. Phys. Lett. B 632, 507–511 (2006). arXiv:hep-ph/0405068

    Google Scholar 

  126. J.W. Qiu, G.F. Sterman, QCD and rescattering in nuclear targets. Int. J. Mod. Phys. E 12, 149 (2003). arXiv:hep-ph/0111002

    Google Scholar 

  127. A.H. Mueller, J.W. Qiu, Gluon recombination and shadowing at small values of x. Nucl. Phys. B 268, 427 (1986)

    Article  ADS  Google Scholar 

  128. L. Gribov, E. Levin, M. Ryskin, Singlet structure function at small x: unitarization of gluon ladders. Nucl. Phys. B 188, 555–576 (1981)

    Article  ADS  Google Scholar 

  129. L. Gribov, E. Levin, M. Ryskin, Semihard processes in QCD. Phys. Rept. 100, 1–150 (1983)

    Article  ADS  Google Scholar 

  130. D.F. Geesaman, K. Saito, A.W. Thomas, The nuclear EMC effect. Ann. Rev. Nucl. Part. Sci. 45, 337–390 (1995)

    Article  ADS  Google Scholar 

  131. L. Frankfurt, M. Strikman, Hard nuclear processes and microscopic nuclear structure. Phys. Rept. 160, 235–427 (1988)

    Article  ADS  Google Scholar 

  132. K. Eskola, H. Paukkunen, C. Salgado, EPS09: a new generation of NLO and LO nuclear parton distribution functions. JHEP 0904, 065 (2009). arXiv:0902.4154

    Google Scholar 

  133. X.N. Wang, M. Gyulassy, HIJING: a Monte Carlo model for multiple jet production in p p, p A and A A collisions. Phys. Rev. D 44, 3501–3516 (1991)

    Article  ADS  Google Scholar 

  134. A. Capella et al., Dual parton model. Phys. Rept. 236, 225–329 (1994)

    Article  ADS  Google Scholar 

  135. J. Ranft, Hadron production in hadron-nucleus and nucleus-nucleus collisions in the dual Monte Carlo multichain fragmentation model. Phys. Rev. D 37, 1842 (1988)

    Article  ADS  Google Scholar 

  136. J. Ranft, Transverse energy distributions in nucleus-nucleus collisions in the dual Monte Carlo multichain fragmentation model. Phys. Lett. B 188, 379 (1987)

    Article  ADS  Google Scholar 

  137. B. Andersson, G. Gustafson, B. Nilsson-Almqvist, A model for low \(p_{\text{ T }}\) hadronic reactions, with generalizations to hadron-nucleus and nucleus-nucleus collisions. Nucl. Phys. B 281, 289 (1987)

    Article  ADS  Google Scholar 

  138. B. Nilsson-Almqvist, E. Stenlund, Interactions between hadrons and nuclei: the Lund Monte Carlo, Fritiof Version 1.6. Comput. Phys. Commun. 43, 387 (1987)

    Article  ADS  Google Scholar 

  139. K. Kajantie, P. Landshoff, J. Lindfors, Minijet production in high-energy nucleus-nucleus collisions. Phys. Rev. Lett. 59, 2527 (1987)

    Article  ADS  Google Scholar 

  140. K. Eskola, K. Kajantie, J. Lindfors, Quark and gluon production in high-energy nucleus-nucleus collisions. Nucl. Phys. B 323, 37 (1989)

    Article  ADS  Google Scholar 

  141. X.N. Wang, Role of multiple mini-jets in high-energy hadronic reactions. Phys. Rev. D 43, 104–112 (1991)

    Article  ADS  Google Scholar 

  142. J.D. Bjorken, fermilab-PUB-82/059-THY (1982)

    Google Scholar 

  143. M.H. Thoma, M. Gyulassy, Quark damping and energy loss in the high temperature QCD. Nucl. Phys. B 351, 491–506 (1991)

    Article  ADS  Google Scholar 

  144. E. Braaten, M.H. Thoma, Energy loss of a heavy quark in the quark-gluon plasma. Phys. Rev. D 44, 2625–2630 (1991)

    Article  ADS  Google Scholar 

  145. M.H. Thoma, Collisional energy loss of high-energy jets in the quark gluon plasma. Phys. Lett. B 273, 128–132 (1991)

    Article  ADS  Google Scholar 

  146. D.A. Appel, Jets as a probe of quark-gluon plasmas. Phys. Rev. D 33, 717 (1986)

    Article  ADS  Google Scholar 

  147. J. Blaizot, L.D. McLerran, Jets in expanding quark-gluon plasmas. Phys. Rev. D 34, 2739 (1986)

    Article  ADS  Google Scholar 

  148. M. Rammerstorfer, U.W. Heinz, Jet acoplanarity as a quark-gluon plasma probe. Phys. Rev. D 41, 306–309 (1990)

    Article  ADS  Google Scholar 

  149. N. Armesto et al., Comparison of jet quenching formalisms for a Quark-Gluon plasma ‘Brick’. arXiv:1106.1106

    Google Scholar 

  150. L. Landau, I. Pomeranchuk, Limits of applicability of the theory of bremsstrahlung electrons and pair production at high-energies. Dokl. Akad. Nauk Ser. Fiz. 92, 535–536 (1953)

    MATH  Google Scholar 

  151. A.B. Migdal, Bremsstrahlung and pair production in condensed media at high-energies. Phys. Rev. 103, 1811–1820 (1956)

    Article  ADS  MATH  Google Scholar 

  152. M. Gyulassy, M. Plumer, Jet quenching in dense matter. Phys. Lett. B 243, 432–438 (1990)

    Article  ADS  Google Scholar 

  153. M. Gyulassy, X.N. Wang, Multiple collisions and induced gluon bremsstrahlung in QCD. Nucl. Phys. B 420, 583–614 (1994). arXiv:nucl-th/9306003

    Google Scholar 

  154. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne, D. Schiff, Radiative energy loss of high-energy quarks and gluons in a finite volume quark-gluon plasma. Nucl. Phys. B 483, 291–320 (1997). arXiv:hep-ph/9607355

    Google Scholar 

  155. B. Zakharov, Fully quantum treatment of the Landau-Pomeranchuk-Migdal effect in QED and QCD. JETP Lett. 63, 952–957 (1996). arXiv:hep-ph/9607440

    Google Scholar 

  156. R. Baier, Jet quenching. Nucl. Phys. A 715, 209–218 (2003). arXiv:hep-ph/0209038

    Google Scholar 

  157. C.A. Salgado, U.A. Wiedemann, Calculating quenching weights. Phys. Rev. D 68, 014008 (2003). arXiv:hep-ph/0302184

    Google Scholar 

  158. M. Gyulassy, P. Levai, I. Vitev, Jet quenching in thin quark gluon plasmas. 1. Formalism. Nucl. Phys. B 571, 197–233 (2000). arXiv:hep-ph/9907461

    Google Scholar 

  159. M. Gyulassy, P. Levai, I. Vitev, Reaction operator approach to non-Abelian energy loss. Nucl. Phys. B 594, 371–419 (2001). arXiv:nucl-th/0006010

    Google Scholar 

  160. U.A. Wiedemann, Transverse dynamics of hard partons in nuclear media and the QCD dipole. Nucl. Phys. B 582, 409–450 (2000). arXiv:hep-ph/0003021

    Google Scholar 

  161. N. Armesto et al., Medium-evolved fragmentation functions. JHEP 0802, 048 (2008). arXiv:0710.3073

    Google Scholar 

  162. A.D. Polosa, C.A. Salgado, Jet shapes in opaque media. Phys. Rev. C 75, 041901 (2007). arXiv:hep-ph/0607295

    Google Scholar 

  163. K.C. Zapp, U.A. Wiedemann, Coherent radiative parton energy loss beyond the BDMPS-Z Limit. arXiv:1202.1192

    Google Scholar 

  164. N. Armesto, L. Cunqueiro, C.A. Salgado, Q-PYTHIA: a medium-modified implementation of final state radiation. Eur. Phys. J. C 63, 679–690 (2009). arXiv:0907.1014

    Google Scholar 

  165. A. Dainese, C. Loizides, G. Paic, Leading-particle suppression in high energy nucleus-nucleus collisions. Eur. Phys. J. C 38, 461–474 (2005). arXiv:hep-ph/0406201

    Google Scholar 

  166. C. Loizides, High transverse momentum suppression and surface effects in Cu+Cu and Au+Au collisions within the PQM model. Eur. Phys. J. C 49, 339–345 (2007). arXiv:hep-ph/0608133

    Google Scholar 

  167. K. Zapp et al., A Monte Carlo Model for ‘Jet Quenching’. Eur. Phys. J. C 60, 617–632 (2009). arXiv:0804.3568

    Google Scholar 

  168. I. Lokhtin, A. Snigirev, A model of jet quenching in ultrarelativistic heavy ion collisions and high-p(T) hadron spectra at RHIC. Eur. Phys. J. C 45, 211–217 (2006). arXiv:hep-ph/0506189

    Google Scholar 

  169. P.B. Arnold, G. D. Moore, and L. G. Yaffe, Transport coefficients in high temperature gauge theories. 1. Leading log results. JHEP 0011, 001 (2000). arXiv:hep-ph/0010177

    Google Scholar 

  170. P.B. Arnold, G.D. Moore, L.G. Yaffe, Photon emission from ultrarelativistic plasmas. JHEP 0111, 057 (2001). arXiv:hep-ph/0109064

    Google Scholar 

  171. P.B. Arnold, G.D. Moore, L.G. Yaffe, Photon emission from quark gluon plasma: complete leading order results. JHEP 0112, 009 (2001). arXiv:hep-ph/0111107

    Google Scholar 

  172. P.B. Arnold, G.D. Moore, L.G. Yaffe, Photon and gluon emission in relativistic plasmas. JHEP 0206, 030 (2002). arXiv:hep-ph/0204343

    Google Scholar 

  173. S. Jeon, G.D. Moore, Energy loss of leading partons in a thermal QCD medium. Phys. Rev. C 71, 034901 (2005). arXiv:hep-ph/0309332

    Google Scholar 

  174. S. Turbide, C. Gale, S. Jeon, G.D. Moore, Energy loss of leading hadrons and direct photon production in evolving quark-gluon plasma, Phys. Rev. C 72, 014906 (2005). arXiv:hep-ph/0502248

    Google Scholar 

  175. Y. Mehtar-Tani, C.A. Salgado, K. Tywoniuk, Anti-angular ordering of gluon radiation in QCD media. Phys. Rev. Lett. 106, 122002 (2011). arXiv:1009.2965

    Google Scholar 

  176. U.A. Wiedemann, Jet quenching versus jet enhancement: a quantitative study of the BDMPS-Z gluon radiation spectrum. Nucl. Phys. A 690, 731–751 (2001). arXiv:hep-ph/0008241

    Google Scholar 

  177. W. Horowitz, B. Cole, Systematic theoretical uncertainties in jet quenching due to gluon kinematics. Phys. Rev. C 81, 024909 (2010). arXiv:0910.1823

    Google Scholar 

  178. P.B. Arnold, W. Xiao, High-energy jet quenching in weakly-coupled quark-gluon plasmas. Phys. Rev. D 78, 125008 (2008). arXiv:0810.1026

    Google Scholar 

  179. S. Caron-Huot, O(g) plasma effects in jet quenching. Phys. Rev. D 79, 065039 (2009). arXiv:0811.1603

    Google Scholar 

  180. I. Vitev, S. Wicks, B.W. Zhang, A theory of jet shapes and cross sections: from hadrons to nuclei. JHEP 0811, 093 (2008). arXiv:0810.2807

    Google Scholar 

  181. I. Vitev, B.W. Zhang, Jet tomography of high-energy nucleus-nucleus collisions at next-to-leading order. Phys. Rev. Lett. 104, 132001 (2010). arXiv:0910.1090

    Google Scholar 

  182. Y. He, I. Vitev, B.W. Zhang, Next-to-leading order analysis of inclusive jet and di-jet production in heavy ion reactions at the Large Hadron Collider (2012). arXiv:1105.2566

    Google Scholar 

  183. G. Ovanesyan, I. Vitev, An effective theory for jet propagation in dense QCD matter: jet broadening and medium-induced bremsstrahlung. JHEP 1106, 080 (2011). arXiv:1103.1074

    Google Scholar 

  184. S.S. Gubser, Drag force in AdS/CFT. Phys. Rev. D 74, 126005 (2006). arXiv:hep-th/0605182

    Google Scholar 

  185. C. Herzog, A. Karch, P. Kovtun, C. Kozcaz, L. Yaffe, Energy loss of a heavy quark moving through \(N=4\) supersymmetric Yang-Mills plasma. JHEP 0607, 013 (2006). arXiv:hep-th/0605158

    Google Scholar 

  186. J. Casalderrey-Solana, D. Teaney, Heavy quark diffusion in strongly coupled \(N=4\) Yang-Mills. Phys. Rev. D 74, 085012 (2006). arXiv:hep-ph/0605199

    Google Scholar 

  187. J. Casalderrey-Solana, D. Teaney, Transverse momentum broadening of a fast quark in a \(N=4\) Yang Mills Plasma. JHEP 0704, 039 (2007). arXiv:hep-th/0701123

    Google Scholar 

  188. H. Liu, K. Rajagopal, U.A. Wiedemann, Calculating the jet quenching parameter from AdS/CFT. Phys. Rev. Lett. 97, 182301 (2006). arXiv:hep-ph/0605178

    Google Scholar 

  189. H. Liu, K. Rajagopal, U.A. Wiedemann, Wilson loops in heavy ion collisions and their calculation in AdS/CFT. JHEP 0703, 066 (2007). arXiv:hep-ph/0612168

    Google Scholar 

  190. N. Armesto, J.D. Edelstein, J. Mas, Jet quenching at finite ‘t Hooft coupling and chemical potential from AdS/CFT. JHEP 0609, 039 (2006). arXiv:hep-ph/0606245

    Google Scholar 

  191. STAR Collaboration, Centrality dependence of charged hadron and strange hadron elliptic flow from \(\sqrt{s_{\text{ NN }}}=200\) GeV Au+Au collisions. Phys. Rev. C 77, 054901 (2008). arXiv:0801.3466

    Google Scholar 

  192. ALICE Collaboration, Elliptic flow of charged particles in Pb+Pb collisions at \(2.76\) TeV. Phys. Rev. Lett. 105, 252302 (2010). arXiv:1011.3914

    Google Scholar 

  193. H. Song, S.A. Bass, U. Heinz, Elliptic flow in \(200\, {\text{ A }} \) GeV Au+Au collisions and \(2.76\,{\text{ A }} \) TeV Pb+Pb collisions: insights from viscous hydrodynamics + hadron cascade hybrid model. Phys. Rev. C 83, 054912 (2011). arXiv:1103.2380

    Google Scholar 

  194. ATLAS Collaboration, Measurement of the azimuthal anisotropy for charged particle production in \(\sqrt{s_{\text{ NN }}}=2.76\) TeV lead-lead collisions with the ATLAS detector. Phys. Rev. C (2012) . arXiv:1203.3087.

    Google Scholar 

  195. PHENIX Collaboration, Suppression of hadrons with large transverse momentum in central Au+Au collisions at \(\sqrt{s_{\text{ NN }}} = 130\) GeV. Phys. Rev. Lett. 88, 022301 (2002). arXiv:nucl-ex/0109003

    Google Scholar 

  196. PHENIX Collaboration, Suppressed \(\pi ^{0}\) production at large transverse momentum in central Au+Au collisions at \(\sqrt{s_{\text{ NN }}}=200\) GeV. Phys. Rev. Lett. 91, 072301 (2003). arXiv:nucl-ex/0304022

    Google Scholar 

  197. STAR Collaboration, Centrality dependence of high \(p_{\text{ T }}\) hadron suppression in Au+Au collisions at \(\sqrt{s_{\text{ NN }}} = 130\) GeV. Phys. Rev. Lett. 89, 202301 (2002). arXiv:nucl-ex/0206011

    Google Scholar 

  198. STAR Collaboration, Transverse momentum and collision energy dependence of high \(p_{\text{ T }}\) hadron suppression in Au+Au collisions at ultrarelativistic energies. Phys. Rev. Lett. 91, 172302 (2003). arXiv:nucl-ex/0305015

    Google Scholar 

  199. STAR Collaboration, Disappearance of back-to-back high\(p_{\text{ T }}\) hadron correlations in central Au+Au collisions at \(\sqrt{s_{\text{ NN }}} = 200\) GeV. Phys. Rev. Lett. 90, 082302 (2003). arXiv:nucl-ex/0210033

    Google Scholar 

  200. STAR Collaboration, Distributions of charged hadrons associated with high transverse momentum particles in pp and Au+Au collisions at \(\sqrt{s_{\text{ NN }}}= 200\) GeV. Phys. Rev. Lett. 95 152301 (2005). arXiv:nucl-ex/0501016

    Google Scholar 

  201. PHENIX Collaboration, Absence of suppression in particle production at large transverse momentum in \(\sqrt{s_{\text{ NN }}}=200\) GeV d+Au collisions. Phys. Rev. Lett. 91, 072303 (2003). arXiv:nucl-ex/0306021

    Google Scholar 

  202. STAR Collaboration, Evidence from d+Au measurements for final state suppression of high \(p\text{ T }\) hadrons in Au+Au collisions at RHIC. Phys. Rev. Lett. 91, 072304 (2003). arXiv:nucl-ex/0306024

    Google Scholar 

  203. PHENIX Collaboration, Centrality dependence of direct photon production in \(\sqrt{s_{\text{ NN }}}=200\) GeV Au+Au collisions. Phys. Rev. Lett. 94, 232301 (2005). arXiv:nucl-ex/0503003

    Google Scholar 

  204. K. Reygers, Characteristics of Parton Energy Loss Studied with High-\(p\text{ T }\) Particle Spectra from PHENIX. J. Phys.G G 35, 104045 (2008). arXiv:0804.4562

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Angerami .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Angerami, A. (2014). Background. In: Jet Quenching in Relativistic Heavy Ion Collisions at the LHC. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01219-3_2

Download citation

Publish with us

Policies and ethics