Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 831 Accesses

Abstract

In this thesis we outlined an approach for computing consistent perturbations to the generalized gravitational field equations for physically meaningful theories. The approach requires a field content, but does not require a particular Lagrangian to be presented for calculations to be performed. Once the field content has been specified we have shown how to write down an effective action for linearized perturbations, and from that how to compute the generalized perturbed gravitational field equations

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Chiang, P. Ade, D. Barkats, J. Battle, E. Bierman, et al. Measurement of CMB polarization power spectra from two Years of BICEP data. Astrophys. J. 711, 1123–1140 (2010). [arXiv:0906.1181]

    Google Scholar 

  2. QUaD collaboration Collaboration, P. Castro et al. Cosmological parameters from the QUaD CMB polarization experiment. Astrophys. J. 701, 857–864 (2009). [arXiv:0901.0810]

    Google Scholar 

  3. MaxiBoom Collaboration Collaboration, J.R. Bond, et al. CMB analysis of boomerang and maxima and the cosmic parameters Omega(tot), Omega(b) h**2, Omega(cdm) h**2, Omega(Lambda), n(s). astro-ph/0011378

    Google Scholar 

  4. N. Jarosik, C. Bennett, J. Dunkley, B. Gold, M. Greason, et al. Seven-Year Wilkinson microwave anisotropy probe (WMAP) observations: Sky Maps, systematic errors, and basic results. Astrophys. J.Suppl. 192, 14 (2011). [arXiv:1001.4744]

    Google Scholar 

  5. A. van Engelen, R. Keisler, O. Zahn, K. Aird, B. Benson, et al. A measurement of gravitational lensing of the microwave background using south pole telescope data. Astrophys. J. 756, 142 (2012). [arXiv:1202.0546]

    Google Scholar 

  6. S. Das, B.D. Sherwin, P. Aguirre, J.W. Appel, J.R. Bond, et al. Detection of the power spectrum of cosmic microwave background lensing by the atacama cosmology telescope. Phys. Rev. Lett. 107, 021301 (2011). [arXiv:1103.2124]

    Google Scholar 

  7. D. Hanson, A. Challinor, A. Lewis, Weak lensing of the CMB. Gen. Rel. Grav. 42, 2197–2218 (2010). [arXiv:0911.0612]

    Google Scholar 

  8. D. Huterer, Weak lensing, dark matter and dark energy. Gen. Rel. Grav. 42, 2177–2195 (2010). [arXiv:1001.1758]

    Google Scholar 

  9. J.-P. Uzan, Tests of general relativity on astrophysical scales. Gen. Rel. Grav. 42, 2219–2246 (2010). [arXiv:0908.2243]

    Google Scholar 

  10. L. van Waerbeke, Y. Mellier, T. Erben, J. Cuillandre, F. Bernardeau, et al. Detection of correlated galaxy ellipticities on CFHT data: first evidence for gravitational lensing by large scale structures. Astron. Astrophys. 358, 30–44 (2000). [astro-ph/0002500]

    Google Scholar 

  11. D.J. Bacon, A.R. Refregier, R.S. Ellis, Detection of weak gravitational lensing by large-scale structure. Mon. Not. Roy. Astron. Soc. 318, 625 (2000). [astro-ph/0003008]

    Google Scholar 

  12. H. Hoekstra, Y. Mellier, L. Van Waerbeke, E. Semboloni, L. Fu, et al. First cosmic shear results from the canada-france-hawaii telescope wide synoptic legacy survey. Astrophys. J. 647, 116–127 (2006). [astro-ph/0511089]

    Google Scholar 

  13. J. Benjamin, C. Heymans, E. Semboloni, L. Van Waerbeke, H. Hoekstra, et al. Cosmological constraints from the 100 square degree weak lensing survey. Mon. Not. Roy. Astron. Soc. 381, 702–712 (2007). [astro-ph/0703570]

    Google Scholar 

  14. R.A. Croft, D.H. Weinberg, M. Bolte, S. Burles, L. Hernquist, et al. Towards a precise measurement of matter clustering: Lyman alpha forest data at redshifts 2–4. Astrophys. J. 581, 20–52 (2002). [astro-ph/0012324]

    Google Scholar 

  15. SDSS Collaboration Collaboration, M. Tegmark et al. Cosmological constraints from the SDSS luminous red galaxies. Phys. Rev. D74, 123507 (2006). [astro-ph/0608632]

    Google Scholar 

  16. B.A. Reid, W.J. Percival, D.J. Eisenstein, L. Verde, D.N. Spergel, et al. Cosmological constraints from the clustering of the sloan digital sky survey DR7 luminous red galaxies. Mon. Not. Roy. Astron. Soc. 404, 60–85 (2010). [arXiv:0907.1659]

    Google Scholar 

  17. R. Hlozek, J. Dunkley, G. Addison, J.W. Appel, J.R. Bond, et al. The atacama cosmology telescope: a measurement of the primordial power spectrum. Astrophys. J. 749, 90 (2012). [arXiv:1105.4887]

    Google Scholar 

  18. S. Nuza, A. Sanchez, F. Prada, A. Klypin, D. Schlegel, et al. The clustering of galaxies at z 0.5 in the SDSS-III data release 9 BOSS-CMASS sample: a test for the LCDM cosmology. arXiv:1202.6057

    Google Scholar 

  19. SDSS Collaboration Collaboration, D.J. Eisenstein et al. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560–574 (2005). [astro-ph/0501171]

    Google Scholar 

  20. R. Laureijs, J. Amiaux, S. Arduini, J.-L. Augueres, J. Brinchmann, et al. Euclid definition study report. arXiv:1110.3193

    Google Scholar 

  21. L. Amendola, Cosmology and fundamental physics with the Euclid satellite. arXiv:1206.1225

    Google Scholar 

  22. G.-B. Zhao, R.G. Crittenden, L. Pogosian, X. Zhang, Examining the evidence for dynamical dark energy. Phys. Rev. Lett. 109, 171301 (2012). [arXiv:1207.3804]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Pearson .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pearson, J. (2014). Discussion and Final Remarks. In: Generalized Perturbations in Modified Gravity and Dark Energy. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01210-0_9

Download citation

Publish with us

Policies and ethics