Skip to main content

The Effective Action Formalism for Cosmological Perturbations

  • Chapter
  • First Online:
Generalized Perturbations in Modified Gravity and Dark Energy

Part of the book series: Springer Theses ((Springer Theses))

  • 843 Accesses

Abstract

The standard model of cosmology uses General Relativity (GR) to describe gravitational interactions, an homogeneous/isotropic FRW metric to describe the geometry and matter content of cold dark matter (CDM)/photons/baryons to describe its constituents. Observations of the cosmic microwave background, supernovae, baryon acoustic oscillations, gravitational lensing and structure formation point to the existence of an additional component dubbed “dark energy”, or a modification to gravity, which needs to be introduced to explain the the observed acceleration [1–5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Supernova Cosmology Project Collaboration, S. Perlmutter et al. Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 517, 565–586 (1999). [astro-ph/9812133]. The Supernova Cosmology Project

    Google Scholar 

  2. Supernova Search Team Collaboration, A. G. Riess et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998).[astro-ph/9805201]

    Google Scholar 

  3. A.G. Riess et al. BVRI light curves for 22 type Ia supernovae. Astron. J. 117, 707–724 (1999). [astro-ph/9810291]

    Google Scholar 

  4. F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta. 6, 110–127 (1933)

    Google Scholar 

  5. E. Komatsu et al. Seven-year wilkinson microwave anisotropy probe (wmap) observations: cosmological interpretation. Astrophys. J. Supplement Ser. 192(218), (2011)

    Google Scholar 

  6. C. Skordis, The tensor-vector-scalar theory and its cosmology. Class. Quant. Grav. 26, 143001 (2009). [arXiv:0903.3602]

    Article  MathSciNet  ADS  Google Scholar 

  7. J.D. Bekenstein, Relativistic gravitation theory for the MOND paradigm. Phys. Rev. D70, 083509 (2004). [astro-ph/0403694]

    Google Scholar 

  8. T.G. Zlosnik, P.G. Ferreira, G.D. Starkman, Modifying gravity with the Aether: an alternative to Dark Matter. Phys. Rev. D75, 044017 (2007). [astro-ph/0607411]

    Google Scholar 

  9. C. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925–935 (1961)

    Google Scholar 

  10. G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space. Int. J. Theor. Phys. 10, 363–384 (1974)

    Article  MathSciNet  Google Scholar 

  11. C. Charmousis, E.J. Copeland, A. Padilla, P.M. Saffin, General second order scalar-tensor theory, self tuning, and the Fab Four. Phys. Rev. Lett. 108, 051101 (2012). [arXiv:1106.2000]

    Article  ADS  Google Scholar 

  12. T. Kobayashi, M. Yamaguchi, J. Yokoyama, Generalized G-inflation: inflation with the most general second-order field equations. Prog. Theor. Phys. 126, 511–529 (2011). [arXiv:1105.5723]

    Google Scholar 

  13. S. Capozziello, S. Carloni, A. Troisi, Quintessence without scalar fields. Recent Res. Dev. Astron. Astrophys. 1, 625 (2003). [astro-ph/0303041]

    Google Scholar 

  14. S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Is cosmic speed—up due to new gravitational physics?. Phys. Rev. D70, 043528 (2004). [astro-ph/0306438]

    Google Scholar 

  15. E.J. Copeland, M. Sami, S. Tsujikawa, Dynamics of dark energy. Int. J. Mod. Phys. D15, 1753–1936 (2006). [hep-th/0603057]

    Google Scholar 

  16. Y. Fujii, Origin of the gravitational constant and particle masses in scale invariant scalar-tensor theory. Phys. Rev. D26, 2580 (1982)

    ADS  Google Scholar 

  17. C. Armendariz-Picon, T. Damour, V.F. Mukhanov, k-Inflation. Phys. Lett. B458, 209–218 (1999). [hep-th/9904075]

    Google Scholar 

  18. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Essentials of k essence. Phys. Rev. D63, 103510 (2001). [astro-ph/0006373]

    Google Scholar 

  19. A. Nicolis, R. Rattazzi, E. Trincherini, The Galileon as a local modification of gravity. Phys. Rev. D79, 064036 (2009). [arXiv:0811.2197]

    MathSciNet  ADS  Google Scholar 

  20. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Modified gravity and cosmology. Phys. Rept. 513, 1–189 (2012). [arXiv:1106.2476]

    Google Scholar 

  21. W. Hu, Structure formation with generalized dark matter. Astrophys. J.506, 485–494 (1998). [astro-ph/9801234]

    Google Scholar 

  22. J. Weller, A.M. Lewis, Large scale cosmic microwave background anisotropies and dark energy. Mon. Not. Roy. Astron. Soc. 346, 987–993 (2003). [astro-ph/0307104]

    Google Scholar 

  23. R. Bean, O. Dore, Probing dark energy perturbations: the dark energy equation of state and speed of sound as measured by WMAP. Phys. Rev. D69, 083503 (2004). [astro-ph/0307100]

    Google Scholar 

  24. W. Hu, I. Sawicki, A parameterized post-friedmann framework for modified gravity. Phys. Rev. D76, 104043 (2007). [arXiv:0708.1190]

    ADS  Google Scholar 

  25. W. Hu, Parametrized post-friedmann signatures of acceleration in the CMB. Phys. Rev. D77, 103524 (2008). [arXiv:0801.2433]

    ADS  Google Scholar 

  26. L. Amendola, M. Kunz, D. Sapone, Measuring the dark side (with weak lensing). JCAP 0804, 013 (2008). [arXiv:0704.2421]

    Article  ADS  Google Scholar 

  27. C. Skordis, Consistent cosmological modifications to the Einstein equations. Phys. Rev. D79, 123527 (2009). [arXiv:0806.1238]

    MathSciNet  ADS  Google Scholar 

  28. R. Bean, M. Tangmatitham, Current constraints on the cosmic growth history. Phys. Rev. D81, 083534 (2010). [arXiv:1002.4197]

    ADS  Google Scholar 

  29. L. Pogosian, A. Silvestri, K. Koyama, G.-B. Zhao, How to optimally parametrize deviations from General Relativity in the evolution of cosmological perturbations? Phys. Rev. D81, 104023 (2010). [arXiv:1002.2382]

    ADS  Google Scholar 

  30. S.A. Appleby, J. Weller, Parameterizing scalar-tensor theories for cosmological probes. JCAP 1012, 006 (2010). [arXiv:1008.2693]

    Article  ADS  Google Scholar 

  31. A. Hojjati, L. Pogosian, G.-B. Zhao, Testing gravity with CAMB and CosmoMC. JCAP 1108, 005 (2011). [arXiv:1106.4543]

    Article  ADS  Google Scholar 

  32. T. Baker, P.G. Ferreira, C. Skordis, J. Zuntz, Towards a fully consistent parameterization of modified gravity. Phys. Rev. D84, 124018 (2011). [arXiv:1107.0491]

    ADS  Google Scholar 

  33. T. Baker, Phi Zeta Delta: growth of perturbations in parameterized gravity for an Einstein-de Sitter Universe. Phys. Rev. D85, 044020 (2012). [arXiv:1111.3947]

    ADS  Google Scholar 

  34. C.M. Will, Theory and experiment in gravitational physics. (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  35. R.A. Battye, A. Moss, Cosmological perturbations in elastic dark energy models. Phys. Rev. D76, 023005 (2007). [astro-ph/0703744]

    Google Scholar 

  36. R.A. Battye, A. Moss, Constraints on the solid dark universe model. JCAP 0506, 001 (2005). [astro-ph/0503033]

    Google Scholar 

  37. R.A. Battye, A. Moss, Anisotropic perturbations due to dark energy. Phys. Rev. D74, 041301 (2006). [astro-ph/0602377]

    Google Scholar 

  38. R. Battye, A. Moss, Anisotropic dark energy and CMB anomalies. Phys. Rev. D80, 023531 (2009). [arXiv:0905.3403]

    ADS  Google Scholar 

  39. S. Weinberg, Effective field theory for inflation. Phys. Rev. D77, 123541 (2008). [arXiv:0804.4291]

    MathSciNet  ADS  Google Scholar 

  40. C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan, L. Senatore, The effective field theory of inflation. JHEP 03, 014 (2008). [arXiv:0709.0293]

    Article  MathSciNet  ADS  Google Scholar 

  41. P. Creminelli, G. D’Amico, J. Norena, F. Vernizzi, The effective theory of Quintessence: the w¡-1 side unveiled. JCAP 0902, 018 (2009). [arXiv:0811.0827]

    Google Scholar 

  42. R. Caldwell, A. Cooray, A. Melchiorri, Constraints on a new post-general relativity cosmological parameter. Phys. Rev. D76, 023507 (2007). [astro-ph/0703375]

    Google Scholar 

  43. J.N. Dossett, M. Ishak, J. Moldenhauer, Testing general relativity at cosmological scales: implementation and parameter correlations. Phys. Rev. D84, 123001 (2011). [arXiv:1109.4583]

    ADS  Google Scholar 

  44. D. Kirk, I. Laszlo, S. Bridle, R. Bean, Optimising cosmic shear surveys to measure modifications to gravity on cosmic scales. arXiv:1109.4536

    Google Scholar 

  45. I. Laszlo, R. Bean, D. Kirk, S. Bridle, Disentangling dark energy and cosmic tests of gravity from weak lensing systematics. arXiv:1109.4535

    Google Scholar 

  46. J. Zuntz, T. Baker, P. Ferreira, C. Skordis, Ambiguous tests of general relativity on cosmological scales. JCAP 1206, 032 (2012). [arXiv:1110.3830]

    Article  ADS  Google Scholar 

  47. T.D. Lee, A theory of spontaneous \(t\) violation. Phys. Rev. D8, 1226–1239 (1973)

    Google Scholar 

  48. B. Carter, Equations of motion of a stiff geodynamic string or higher brane. Class. Quant. Grav. 11(11), 2677 (1994)

    Google Scholar 

  49. R.A. Battye, B. Carter, Second order Lagrangian and symplectic current for gravitationally perturbed Dirac-Goto-Nambu strings and branes. Class. Quant. Grav. 17, 3325–3334 (2000). [hep-th/9811075]

    Google Scholar 

  50. B. Carter, H. Quintana, Foundations of general relativistic high-pressure elasticity theory. Proc. R. Soci. Lond. Math. Phys. Sci. 331(1584), 57–83 (1972)

    Google Scholar 

  51. B. Carter, Elastic perturbation theory in general relativity and a variation principle for a rotating solid star. Commun. Math. Phys. 30, 261–286 (1973)

    Article  ADS  MATH  Google Scholar 

  52. B. Carter, Speed of sound in a high-pressure general-relativistic solid. Phys. Rev. D7, 1590–1593 (1973)

    Google Scholar 

  53. J.L. Friedman, B.F. Schutz, Erratum: on the stability of relativistic systems. Astrophys. J. 200, 204–220 (1975)

    Google Scholar 

  54. B. Carter, H. Quintana, Gravitational and acoustic waves in an elastic medium. Phys. Rev. D16(1016), 2928–2938 (1977)

    Google Scholar 

  55. B. Carter, Rheometric structure theory, convective differentiation and continuum electrodynamics. Proc. R. Soci. Lond. Math. Phys. Sci. 372(1749), 169–200 (1980)

    Google Scholar 

  56. L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 3rd edn. (Pergamon Press, Oxford, 1986)

    Google Scholar 

  57. M. Bucher, D.N. Spergel, Is the dark matter a solid?. Phys. Rev. D60, 043505 (1999). [astro-ph/9812022]

    Google Scholar 

  58. B. Carter, Interaction of gravitational waves with an elastic solid medium. gr-qc/0102113

    Google Scholar 

  59. T. Azeyanagi, M. Fukuma, H. Kawai, K. Yoshida, Universal description of viscoelasticity with foliation preserving diffeomorphisms. Phys. Lett. B681, 290–295 (2009). [arXiv:0907.0656]

    Google Scholar 

  60. M. Fukuma, Y. Sakatani, Relativistic viscoelastic fluid mechanics. Phys. Rev. E84, 026316 (2011). [arXiv:1104.1416]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Pearson .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pearson, J. (2014). The Effective Action Formalism for Cosmological Perturbations. In: Generalized Perturbations in Modified Gravity and Dark Energy. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01210-0_2

Download citation

Publish with us

Policies and ethics