Skip to main content

Pattern Formation

Strings, Backgrounds and their Classification

  • Chapter
  • First Online:
Deterministic Abelian Sandpile Models and Patterns

Part of the book series: Springer Theses ((Springer Theses))

  • 634 Accesses

Abstract

It has been spent a huge amount of efforts in the study of Abelian Sandpile Model, as prototype of Self Organized Criticality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here and in the following, bold letters \({\varvec{k}},{\varvec{v}},\ldots \) are vectors in \(\mathbb Z ^2\) if not otherwise stated.

  2. 2.

    We use here the notation of Chap. 2

  3. 3.

    The sites we are interested in are the ones on the border of the framing polygons described in Sect. 5.4

  4. 4.

    For more details see appendix D.

  5. 5.

    Each pair also define a parallelogram, whose area is constant, equal to the magnitude of the cross product.

  6. 6.

    In the following we will use \(\varvec{v}_3\) in addition to \(\varvec{v}_1\) and \(\varvec{v}_2\) with the constraint \(\varvec{v}_1+\varvec{v}_2+\varvec{v}_3=0\).

  7. 7.

    The name blue cells comes from the color for sites of height 2 used in our representation.

  8. 8.

    We call tile size the area of the corresponding framing polygon and we denote it by \(|F(\cdot )|\).

  9. 9.

    We want \(|\varvec{v}_1(B)\wedge \varvec{v}_2(B)|=|F(P)|\) and we know \(|F(P)|=|\varvec{k}|^2-|F(B(P))|\), with \(|F(B(P))|=\varvec{w}_1\wedge \varvec{w}_2\). So we have \(|\varvec{v}_1(B)\wedge \varvec{v}_2(B)|=i\varvec{k}\wedge i(\varvec{w}_\beta \pm i\varvec{k})=\varvec{k}\wedge \varvec{w}_\beta \pm \varvec{k}\wedge \varvec{k}=\varvec{k}\wedge \varvec{w}_\beta \pm |\varvec{k}|^2\), the last two summands have to subtract each other, but \(|\varvec{k}|^2\) is always positive, so its sign has to change as the sign of \(\varvec{k}\wedge \varvec{w}_\beta \) changes.

  10. 10.

    \(\varvec{k}\) and \(-\varvec{k}\) indentify the same string.

  11. 11.

    \(\varvec{v}_1(B_1)\wedge \varvec{v}_2(B_1)=i\varvec{k}_0\wedge i(\varvec{p}+i\varvec{k}_0)=(\varvec{p}+\varvec{q})\wedge \varvec{p}+ \varvec{k}_0\wedge \varvec{k}_0=\varvec{v}_1(B_0)\wedge \varvec{v}_2(B_0)+|\varvec{k}_0|^2>0\)

  12. 12.

    Only two regions, if there are two sides, one horizontal and one vertical.

  13. 13.

    Building the triangle with sides of 1, 2 or 3 tiles, each of the tiles of the triangle is in contact with the exterior, and in this condition the burning test works.

  14. 14.

    The sequence of Mersenne numbers http://oeis.org/A000225, are of the form \(M_n\equiv 2^n-1\) where \(n\) is a positive integer. The Mersenne numbers consist of all 1s in base-2, and are therefore binary repunits. Sometimes Mersenne numbers are considered to be only the ones with \(n\) prime.

References

  1. D. Dhar, T. Sadhu, S. Chandra, Pattern formation in growing sandpiles. Europhys. Lett. 85, 48002 (2009)

    Article  ADS  Google Scholar 

  2. T. Sadhu, D. Dhar, Pattern formation in growing sandpiles with multiple sources or sinks. J. Stat. Phys. 138, 815–837 (2010). doi:10.1007/s10955-009-9901-3

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. D. Dhar, T. Sadhu, Pattern Formation in Fast-Growing Sandpiles, ArXiv e-prints, (2011), arXiv:1109.2908v1

    Google Scholar 

  4. T. Sadhu, D. Dhar, The effect of noise on patterns formed by growing sandpiles. J. Stat. Mech.: Theor. Exp. 2011, P03001 (2011). arXiv:1012.4809

    Google Scholar 

  5. S. Caracciolo, G. Paoletti, A. Sportiello, Conservation laws for strings in the abelian sandpile model. Europhys. Lett. 90, 60003 (2010). arXiv:1002.3974v1

    Google Scholar 

  6. D. Dhar, Self-organized critical state of sandpile automaton models. Phys. Rev. Lett. 64, 1613–1616 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. P. Bak, C. Tang, K. Wiesenfeld, Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  8. M. Creutz, Abelian sandpiles. Comp. Phys. 5, 198–203 (1991)

    Article  Google Scholar 

  9. Y. Le-Borgne, D. Rossin, On the identity of the sandpile group, Discrete Mathematics. LaCIM 2000 Conf. Combinator. Comp. Sci. Appl. 256, 775–790 (2002)

    Google Scholar 

  10. S. Caracciolo, G. Paoletti, A. Sportiello, Explicit characterization of the identity configuration in an abelian sandpile model. J. Phys. A: Math. Theor. 41, 495003 (2008). arXiv:0809.3416v2

    Google Scholar 

  11. M. Creutz, Abelian sandpiles. Nucl. Phys. B (Proc. Suppl.), 20, 758–761 (1991)

    Google Scholar 

  12. S. Ostojic, Patterns formed by addition of grains to only one site of an abelian sandpile. Phys. A: Stat. Mech. Appl. 318, 187–199 (2003)

    Article  MATH  Google Scholar 

  13. A. Fey-den Boer, F. Redig, Limiting shapes for deterministic centrally seeded growth models. J. Stat. Phys. 130, 579–597 (2008). doi:10.1007/s10955-007-9450-6

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. M. Widom, Bethe ansatz solution of the square-triangle random tiling model. Phys. Rev. Lett. 70, 2094–2097 (1993)

    Article  ADS  Google Scholar 

  15. P.A. Kalugin, The square-triangle random-tiling model in the thermodynamic limit. J. Phys. A: Math. General 27, 3599 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. A. Verberkmoes, B. Nienhuis, Triangular trimers on the triangular lattice: an exact solution. Phys. Rev. Lett. 83, 3986–3989 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guglielmo Paoletti .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Paoletti, G. (2014). Pattern Formation. In: Deterministic Abelian Sandpile Models and Patterns. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01204-9_5

Download citation

Publish with us

Policies and ethics