Skip to main content

Iron-Based Superconductors

  • Chapter
  • First Online:
  • 683 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Two decades into the intensive study of the cuprate superconductors, the condensed-matter community got stirred up once again when another completely different family of superconductors was discovered by the group of Hideo Hosono in 2006 [1]

It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts

—Sherlock Holmes, A Scandal in Bohemia

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In this work we adopt the generalized definition of ‘high-temperature superconductors’ as materials with the superconducting transition temperature above 28 K (\(T_{\mathrm{{c}}}\) of most conventional superconductors falls below this value. A well-known exception is MgB\(_2\) with \(T_{\mathrm{{c}}}\) \(=39\,\mathrm K \) [3], which is a conventional, albeit a two-band superconductor). This definition differs from the historical, industrially important, notion of high-temperature superconductors as materials with \(T_{\mathrm{{c}}}\) above the boiling point of liquid nitrogen (77 K).

  2. 2.

    with the exception of the iron-selenide compounds with vacancy ordering, which are dominated by an antiferromagnetic semiconducting phase at room temperature. Their complete classification is complicated by the fact that no single-phase superconducting compounds have been synthesized up to date and even the identification of the parent compound of this class of materials appears problematic.

  3. 3.

    Although the superconducting gap does depend on the coupling strength, its dependence on other quantities complicates the extraction of the pairing strength alone [36].

  4. 4.

    The magnetic scattering function is connected to the differential neutron scattering cross-section (intensity) per atom via \(d^2\sigma /N d\Omega dE_{\mathrm{f }}=(k_{\mathrm{f }}/k_{\mathrm{i }})\left| b\right| ^2S(\mathbf{Q},\omega )\), where \(N\) is the total number of atoms, \(\Omega \) is the scattering solid angle, \(E_{\mathrm{f }}\) is the final energy, \(k_{\mathrm{f,i }}\) is the final (initial) wave vector of neutrons, and \(b\) is the scattering length.

References

  1. Kamihara, Y., et al. (2006). Iron-based layered superconductor: LaOFeP. Journal of the American Chemical Society, 128, 10012–10013.

    Article  Google Scholar 

  2. Kamihara, Y., Watanabe, T., Hirano, M., & Hosono, H. (2008). Iron-based layered superconductor \({\rm {La}}[{\rm {O}}_{1-x}{\rm {F}}_x]{\rm {FeAs}} (x =0.05\rm -0.12)\) with \(T_{{\rm {c}}}=26\,{\rm {K}}\). Journal of the American Chemical Society, 130, 3296.

    Article  Google Scholar 

  3. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., & Akimitsu, J. (2001). Superconductivity at 39 K in magnesium diboride. Nature, 410, 63–64.

    Article  ADS  Google Scholar 

  4. Zhi-An, R., et al. (2008). Superconductivity at 55 K in iron-based F-doped layered quaternary compound \({\rm {Sm}}[{\rm {O}}_{1-x}{\rm {F}}_x]{\rm {FeAs}}\). Chinese Physics Letters, 25, 2215.

    Article  ADS  Google Scholar 

  5. Rotter, M., Tegel, M., & Johrendt, D. (2008). Superconductivity at 38 K in the iron arsenide \(({\rm {Ba}}_{1-x}{\rm {K}}_x){\rm {Fe}}_2{\rm {As}}_2\). Physical Review Letters, 101, 107006.

    Article  ADS  Google Scholar 

  6. Chu, C. W. (2009). High-temperature superconductivity: alive and kicking. Nature Physics, 5, 787–789.

    Article  ADS  Google Scholar 

  7. Bacsa, J., et al. (2011). Cation vacancy order in the \({\rm {K}}_{0.8+x}{\rm {Fe}}_{1.6-y}{\rm {Se}}_2\) system: five-fold cell expansion accommodates 20 % tetrahedral vacancies. Chemical Science, 2, 1054.

    Article  Google Scholar 

  8. Johnston, D. C. (2010). The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Advances in Physics, 59, 803.

    Article  ADS  Google Scholar 

  9. Inosov, D. S., et al. (2011). Crossover from weak to strong pairing in unconventional superconductors. Physical Review B, 83, 214520.

    Article  ADS  Google Scholar 

  10. Rotter, M., et al. (2008). Spin-density-wave anomaly at 140 K in the ternary iron arsenide \({\rm {BaFe}}_2{\rm {As}}_2\). Physical Review B, 78, 020503.

    Article  ADS  Google Scholar 

  11. Song, C.-L., et al. (2012). Suppression of superconductivity by twin boundaries in FeSe. Physical Review Letters, 109, 137004.

    Article  ADS  Google Scholar 

  12. Kimber, S. A. J., et al. (2009). Similarities between structural distortions under pressure and chemical doping in superconducting \({\rm {BaFe}}_2{\rm {As}}_2\). Nature Materials, 8, 471–475.

    Article  ADS  Google Scholar 

  13. Guo, Y., et al. (2012). Continuous critical temperature enhancement with gradual hydrogen doping in \({\rm {LaFeAsO}}_{0.85}{\rm {H}}_x\) (\(x=0 - 0.85\)). Physical Review B, 86, 054523.

    Article  ADS  Google Scholar 

  14. Kittel, C. (2004). Introduction to solid state physics. New York: Wiley.

    Google Scholar 

  15. Park, J. T., et al. (2010). Symmetry of spin excitation spectra in the tetragonal paramagnetic and superconducting phases of 122-ferropnictides. Physical Review B, 82, 134503.

    Article  ADS  Google Scholar 

  16. Marcinkova, A., et al. (2010). Superconductivity in \({\rm {NdFe}}_{1-x}{\rm {Co}}_x{\rm {AsO}}\) \((0.05\le x\le 0.20)\) and rare-earth magnetic ordering in NdCoAsO. Physical Review B, 81, 064511.

    Article  ADS  Google Scholar 

  17. McGuire, M. A., Sefat, A. S., Sales, B. C., & Mandrus, D. (2010). Iron substitution in NdCoAsO: crystal structure and magnetic phase diagram. Physical Review B, 82, 092404.

    Article  ADS  Google Scholar 

  18. Li, Y. K., et al. (2012). Magnetic phase diagram in the Co-rich side of the \(L{\rm {Co}}_{1-x}{\rm {Fe}}_x{\rm {AsO}}\) (\(L=\) La, Sm) system. Physical Review B, 86, 104408.

    Article  ADS  Google Scholar 

  19. Christianson, A. D., et al. (2008). Unconventional superconductivity in \({\rm {Ba}}_{0.6}{\rm {K}}_{0.4}{\rm {Fe}}_2{\rm {As}}_2\) from inelastic neutron scattering. Nature, 456, 930.

    Article  ADS  Google Scholar 

  20. Inosov, D. S., et al. (2009). Normal-state spin dynamics and temperature-dependent spin-resonance energy in optimally doped \({\rm {BaFe}}_{1.85}{\rm {Co}}_{0.15}{\rm {As}}_2\). Nature Physics, 6, 178.

    Article  ADS  Google Scholar 

  21. Popovich, P., et al. (2010). Specific heat measurements of \({\rm {Ba}}_{0.68}{\rm {K}}_{0.32}{\rm {Fe}}_2{\rm {As}}_2\) single crystals: evidence for a multiband strong-coupling superconducting state. Physical Review Letters, 105, 027003.

    Article  ADS  Google Scholar 

  22. Park, J. T., et al. (2011). Magnetic resonant mode in the low-energy spin-excitation spectrum of superconducting \({\rm {Rb}}_2{\rm {Fe}}_4{\rm {Se}}_5\) single crystals. Physical Review Letters, 107, 177005.

    Article  ADS  Google Scholar 

  23. Charnukha, A., et al. (2011). Eliashberg approach to infrared anomalies induced by the superconducting state of \({\rm {Ba}}_{0.68}{\rm {K}}_{0.32}{\rm {Fe}}_2{\rm {As}}_2\) single crystals. Physical Review B, 84, 174511.

    Article  ADS  Google Scholar 

  24. Lee, G., et al. (2012). Orbital selective Fermi surface shifts and mechanism of high \(T_{{\rm {c}}}\) superconductivity in correlated \(A{\rm {FeAs}}\) (\(A=\)Li, Na). Physical Review Letters, 109, 177001.

    Article  ADS  Google Scholar 

  25. Gati, E., et al. (2012). Hydrostatic-pressure tuning of magnetic, nonmagnetic, and superconducting states in annealed \({\rm {Ca}}({\rm {Fe}}_{1-x}{\rm {Co}}_x)_2{\rm {As}}_2\). Physical Review B, 86, 220511.

    Article  ADS  Google Scholar 

  26. Stewart, G. R. (2011). Superconductivity in iron compounds. Reviews of Modern Physics, 83, 1589–1652.

    Article  ADS  Google Scholar 

  27. Ksenofontov, V., et al. (2012). Superconductivity and magnetism in \({\rm {Rb}}_{0.8}{\rm {Fe}}_{1.6}{\rm {Se}}_2\) under pressure. Physical Review B, 85, 214519.

    Article  ADS  Google Scholar 

  28. Marsik, P., et al. (2010). Coexistence and competition of magnetism and superconductivity on the nanometer scale in underdoped \({\rm {BaFe}}_{1.89}{\rm {Co}}_{0.11}{\rm {As}}_2\). Physical Review Letters, 105, 057001.

    Article  ADS  Google Scholar 

  29. Park, J. T., et al. (2009). Electronic phase separation in the slightly underdoped iron pnictide superconductor \(({\rm {Ba}}_{1-x}{\rm {K}}_x){\rm {Fe}}_2{\rm {As}}_2\). Physical Review Letters, 102, 117006.

    Article  ADS  Google Scholar 

  30. Li, Z., et al. (2012). Microscopic coexistence of antiferromagnetic order and superconductivity in \({\rm {Ba}}_{0.77}{\rm {K}}_{0.23}{\rm {Fe}}_2{\rm {As}}_2\). Physical Review B, 86, 180501.

    Article  ADS  Google Scholar 

  31. Avci, S., et al. (2012). Phase diagram of \({\rm {Ba}}_{1-x}{\rm {K}}_x{\rm {Fe}}_2{\rm {As}}_2\). Physical Review B, 85, 184507.

    Article  ADS  Google Scholar 

  32. Ma, L., et al. (2012). Microscopic coexistence of superconductivity and antiferromagnetism in underdoped \({\rm {Ba}}({\rm {Fe}}_{1-x}{\rm {Ru}}_x)_2{\rm {As}}_2\). Physical Review Letters, 109, 197002.

    Article  ADS  Google Scholar 

  33. Hashimoto, K., et al. (2012). A sharp peak of the zero-temperature penetration depth at optimal composition in \({\rm {BaFe}}_2({\rm {As}}_{1-x}{\rm {P}}_x)_2\). Science, 336, 1554–1557.

    Article  ADS  Google Scholar 

  34. Rotter, M., Pangerl, M., Tegel, M., & Johrendt, D. (2008). Superconductivity and crystal structures of \(({\rm {Ba}}_{1-x}{\rm {K}}_x){\rm {Fe}}_2{\rm {As}}_2\) (\(x=0-1\)). Angewandte Chemie International Edition, 47, 7949–7952.

    Article  Google Scholar 

  35. Chu, J.-H., Analytis, J. G., Kucharczyk, C., & Fisher, I. R. (2009). Determination of the phase diagram of the electron-doped superconductor \({\rm {Ba}}({\rm {Fe}}_{1-x}{\rm {Co}}_x)_2{\rm {As}}_2\). Physical Review B, 79, 014506.

    Article  ADS  Google Scholar 

  36. Tinkham, M. (1995). Introduction to superconductivity. New York: McGraw-Hill.

    Google Scholar 

  37. Goldman, A. I., et al. (2008). Lattice and magnetic instabilities in \(\text{ CaFe }_2{\rm {As}}_2\): a single-crystal neutron diffraction study. Physical Review B, 78, 100506.

    Article  ADS  Google Scholar 

  38. Ni, N., et al. (2008). First-order structural phase transition in \({\rm {CaFe}}_2{\rm {As}}_2\). Physical Review B, 78, 014523.

    Article  ADS  Google Scholar 

  39. Yan, J.-Q., et al. (2008). Structural transition and anisotropic properties of single-crystalline \({\rm {SrFe}}_2{\rm {As}}_2\). Physical Review B, 78, 024516.

    Article  ADS  Google Scholar 

  40. Loudon, J. C., Bowell, C. J., Gillett, J., Sebastian, S. E., & Midgley, P. A. (2010). Determination of the nature of the tetragonal to orthorhombic phase transition in \({\rm {SrFe}}_2\text{ As }_2\) by measurement of the local order parameter. Physical Review B, 81, 214111.

    Article  ADS  Google Scholar 

  41. Blomberg, E. C., et al. (2011). In-plane anisotropy of electrical resistivity in strain-detwinned \({\rm {SrFe}}_2{\rm {As}}_2\). Physical Review B, 83, 134505.

    Article  ADS  Google Scholar 

  42. Chu, J.-H., et al. (2010). In-plane resistivity anisotropy in an underdoped iron arsenide superconductor. Science, 329, 824–826.

    Article  ADS  Google Scholar 

  43. Tanatar, M. A., et al. (2010). Uniaxial-strain mechanical detwinning of \({\rm {CaFe}}_2{\rm {As}}_2\) and \(\text{ BaFe }_2{\rm {As}}_2\) crystals: optical and transport study. Physical Review B, 81, 184508.

    Article  ADS  Google Scholar 

  44. Chu, J.-H., Kuo, H.-H., Analytis, J. G., & Fisher, I. R. (2012). Divergent nematic susceptibility in an iron arsenide superconductor. Science, 337, 710–712.

    Article  ADS  Google Scholar 

  45. Kasahara, S., et al. (2012). Electronic nematicity above the structural and superconducting transition in \({\rm {BaFe}}_2({\rm {As}}_{1-x}{\rm {P}}_x)_2\). Nature, 486, 382–385.

    Article  ADS  Google Scholar 

  46. Fernandes, R. M., Abrahams, E., & Schmalian, J. (2011). Anisotropic in-plane resistivity in the nematic phase of the iron pnictides. Physical Review Letters, 107, 217002.

    Article  ADS  Google Scholar 

  47. Fernandes, R. M., Chubukov, A. V., Knolle, J., Eremin, I., & Schmalian, J. (2012). Preemptive nematic order, pseudogap, and orbital order in the iron pnictides. Physical Review B, 85, 024534.

    Article  ADS  Google Scholar 

  48. Yi, M., et al. (2011). Symmetry-breaking orbital anisotropy observed for detwinned \({\rm {Ba}}({\rm {Fe}}_{1-x}{\rm {Co}}_x)_2{\rm {As}}_2\) above the spin density wave transition. Proceedings of the National Academy of Sciences, 108, 6878–6883.

    Article  ADS  Google Scholar 

  49. Damascelli, A., Hussain, Z., & Shen, Z.-X. (2003). Angle-resolved photoemission studies of the cuprate superconductors. Reviews of Modern Physics, 75, 473–541.

    Article  ADS  Google Scholar 

  50. Sebastian, S. E. (2012). Quantum oscillations in iron pnictide superconductors. In N.L. Wang, H. Hosono, P. C. Dai (Eds.), Iron-based superconductors—materials, properties and mechanisms. Singapore: Pan Stanford Publishing.

    Google Scholar 

  51. Imada, M., Fujimori, A., & Tokura, Y. (1998). Metal-insulator transitions. Reviews of Modern Physics, 70, 1039–1263.

    Article  ADS  Google Scholar 

  52. Charnukha, A., et al. (2011). Superconductivity-induced optical anomaly in an iron arsenide. Nature Communications, 2, 219.

    Article  ADS  Google Scholar 

  53. Mazin, I. I., & Schmalian, J. (2009). Pairing symmetry and pairing state in ferropnictides: theoretical overview. Physica C, 469, 614–627.

    Article  ADS  Google Scholar 

  54. Zabolotnyy, V. B., et al. (2009). \((\pi,\pi )\) electronic order in iron arsenide superconductors. Nature, 457, 569–572.

    Article  ADS  Google Scholar 

  55. Arnold, B. J., et al. (2011). Nesting of electron and hole Fermi surfaces in nonsuperconducting \({\rm {BaFe}}_2{\rm {P}}_2\). Physical Review B, 83, 220504.

    Article  ADS  Google Scholar 

  56. Basov, D. N., & Chubukov, A. V. (2011). Manifesto for a higher \(T_{{\rm {c}}}\). Nature Physics, 7, 272–276.

    Article  ADS  Google Scholar 

  57. Evtushinsky, D. V., et al. (2009). Momentum dependence of the superconducting gap in \({\rm {Ba}}_{1-x}{\rm {K}}_x{\rm {Fe}}_2{\rm {As}}_2\). Physical Review B, 79, 054517.

    Article  ADS  Google Scholar 

  58. Evtushinsky, D.V., et al. (2012). Strong pairing at iron \(3{d}_{\rm {xz, yz}}\) orbitals in hole-doped \({\rm {BaFe}}_2{\rm {As}}_2\). arXiv:1204.2432 (unpublished).

    Google Scholar 

  59. Analytis, J. G., et al. (2009). Fermi surface of \({\rm {SrFe}}_2{\rm {P}}_2\) determined by the de Haas-van Alphen effect. Physical Review Letters, 103, 076401.

    Article  ADS  Google Scholar 

  60. Carrington, A. (2011). Quantum oscillation studies of the Fermi surface of iron-pnictide superconductors. Reports on Progress in Physics, 74, 124507.

    Article  ADS  Google Scholar 

  61. Analytis, J. G., Chu, J.-H., McDonald, R. D., Riggs, S. C., & Fisher, I. R. (2010). Enhanced Fermi-surface nesting in superconducting \({\rm {BaFe}}_2({\rm {As}}_{1-x}{\rm {P}}_x)_2\) revealed by de Haas-van Alphen effect. Physical Review Letters, 105, 207004.

    Article  ADS  Google Scholar 

  62. Shishido, H., et al. (2010). Evolution of the Fermi surface of \({\rm {BaFe}}_2({\rm {As}}_{1-x}{\rm {P}}_x)_2\) on entering the superconducting dome. Physical Review Letters, 104, 057008.

    Article  ADS  Google Scholar 

  63. Shan, L., et al. (2012). Evidence of a spin resonance mode in the iron-based superconductor \({\rm {Ba}}_{0.6}{\rm {K}}_{0.4}{\rm {Fe}}_2{\rm {As}}_2\) from scanning tunneling spectroscopy. Physical Review Letters, 108, 227002.

    Article  ADS  Google Scholar 

  64. Dai, P., Hu, J., & Dagotto, E. (2012). Magnetism and its microscopic origin in iron-based high-temperature superconductors. Nature Physics, 8, 709–718.

    Article  ADS  Google Scholar 

  65. Yoshida, T., et al. (2006). Systematic doping evolution of the underlying Fermi surface of \({\rm {La}}_{2-x}{\rm {Sr}}_x{\rm {Cu}}{\rm {O}}_4\). Physical Review B, 74, 224510.

    Article  ADS  Google Scholar 

  66. Xia, Y., et al. (2009). Fermi surface topology and low-lying quasiparticle dynamics of parent \({\rm {Fe}}_{1+x}{\rm {Te}}/{\rm {Se}}\) superconductor. Physical Review Letters, 103, 037002.

    Article  ADS  Google Scholar 

  67. Qian, T., et al. (2011). Absence of a holelike Fermi surface for the iron-based \({\rm {K}}_{0.8}{\rm {Fe}}_{1.7}{\rm {Se}}_2\) superconductor revealed by angle-resolved photoemission spectroscopy. Physical Review Letters, 106, 187001.

    Article  ADS  Google Scholar 

  68. Vaknin, D., et al. (1987). Antiferromagnetism in \({\rm {La}}_2{\rm {CuO}}_{4-y}\). Physical Review Letters, 58, 2802–2805.

    Article  ADS  Google Scholar 

  69. Gruner, G. (2000). Density waves in solids. Westview Press, Boulder.

    Google Scholar 

  70. Fawcett, E. (1988). Spin-density-wave antiferromagnetism in chromium. Reviews of Modern Physics, 60, 209–283.

    Article  ADS  Google Scholar 

  71. Schafgans, A. A., et al. (2012). Electronic correlations and unconventional spectral weight transfer in the high-temperature pnictide \({\rm {BaFe}}_{2-x}{\rm {Co}}_x{\rm {As}}_2\) superconductor using infrared spectroscopy. Physical Review Letters, 108, 147002.

    Article  ADS  Google Scholar 

  72. Harriger, L. W., et al. (2011). Nematic spin fluid in the tetragonal phase of \({\rm {BaFe}}_2{\rm {As}}_2\). Physical Review B, 84, 054544.

    Article  ADS  Google Scholar 

  73. Kaneshita, E., & Tohyama, T. (2010). Spin and charge dynamics ruled by antiferromagnetic order in iron pnictide superconductors. Physical Review B, 82, 094441.

    Article  ADS  Google Scholar 

  74. Coldea, R., et al. (2001). Spin waves and electronic interactions in \({\rm {La}}_2{\rm {CuO}}_4\). Physical Review Letters, 86, 5377–5380.

    Article  ADS  Google Scholar 

  75. Gretarsson, H., et al. (2011). Revealing the dual nature of magnetism in iron pnictides and iron chalcogenides using X-ray emission spectroscopy. Physical Review B, 84, 100509.

    Article  ADS  Google Scholar 

  76. Borisenko, S. V., et al. (2010). Superconductivity without nesting in LiFeAs. Physical Review Letters, 105, 067002.

    Article  ADS  Google Scholar 

  77. Ishikawa, Y., Noda, Y., Uemura, Y. J., Majkrzak, C. F., & Shirane, G. (1985). Paramagnetic spin fluctuations in the weak itinerant-electron ferromagnet MnSi. Physical Review B, 31, 5884–5893.

    Article  ADS  Google Scholar 

  78. Boeri, L., Dolgov, O. V., & Golubov, A. A. (2008). Is \({\rm {LaFeAsO}}_{1-x}{\rm {F}}_x\) an electron-phonon superconductor? Physical Review Letters, 101, 026403.

    Article  ADS  Google Scholar 

  79. Moriya, T., & Ueda, K. (2003). Antiferromagnetic spin fluctuation and superconductivity. Reports on Progress in Physics, 66, 1299.

    Article  ADS  Google Scholar 

  80. Scalapino, D. J., Loh, E., & Hirsch, J. E. (1986). \(d\)-wave pairing near a spin-density-wave instability. Physical Review B, 34, 8190–8192.

    Article  ADS  Google Scholar 

  81. Tsuei, C. C., & Kirtley, J. R. (2000). Pairing symmetry in cuprate superconductors. Reviews of Modern Physics, 72, 969–1016.

    Article  ADS  Google Scholar 

  82. Bennemann, K.-H., & Ketterson, J. B. (2008). Superconductivity: volume 1: conventional and unconventional superconductors. Springer, Berlin.

    Google Scholar 

  83. Zhang, C., et al. (2011). Neutron scattering studies of spin excitations in hole-doped \({\rm {Ba}}_{0.67}{\rm {K}}_{0.33}{\rm {Fe}}_2{\rm {As}}_2\) superconductor. Science Reports, 1, 115.

    ADS  Google Scholar 

  84. Friemel, G., et al. (2012). Reciprocal-space structure and dispersion of the magnetic resonant mode in the superconducting phase of \({\rm {Rb}}_x{\rm {Fe}}_{2-y}{\rm {Se}}_2\) single crystals. Physical Review B, 85, 140511.

    Article  ADS  Google Scholar 

  85. Friemel, G., et al. (2012). Conformity of spin fluctuations in alkali-metal iron selenide superconductors inferred from the observation of a magnetic resonant mode in \({\rm {K}}_x{\rm {Fe}}_{2-y}{\rm {Se}}_2\). Europhysics Letters, 99, 67004.

    Article  ADS  Google Scholar 

  86. Taylor, A. E., et al. (2012). Spin-wave excitations and superconducting resonant mode in \({\rm {Cs}}_x{\rm {Fe}}_{2-y}{\rm {Se}}_2\). Physical Review B, 86, 094528.

    Article  ADS  Google Scholar 

  87. Onari, S., Kontani, H., & Sato, M. (2010). Structure of neutron-scattering peaks in both \(s_{++}\)-wave and \(s_{\pm } \)-wave states of an iron pnictide superconductor. Physical Review B, 81, 060504.

    Article  ADS  Google Scholar 

  88. Annett, J. F. (1990). Symmetry of the order parameter for high-temperature superconductivity. Advances in Physics, 39, 83–126.

    Article  ADS  Google Scholar 

  89. Van Harlingen, D. J. (1995). Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors: evidence for \(d_{x^2-y^2}\) symmetry. Reviews of Modern Physics, 67, 515–535.

    Article  ADS  Google Scholar 

  90. Hanaguri, T., Niitaka, S., Kuroki, K., & Takagi, H. (2010). Unconventional \(s\)-wave superconductivity in Fe(Se, Te). Science, 328, 474.

    Article  ADS  Google Scholar 

  91. Golubov, A. A., & Mazin, I. I. (2013). Designing phase-sensitive tests for Fe-based superconductors. Applied Physics Letters, 102, 032601.

    Article  ADS  Google Scholar 

  92. Shimojima, T., et al. (2010). Orbital-dependent modifications of electronic structure across the magnetostructural transition in \({\rm {BaFe}}_2{\rm {As}}_2\). Physical Review Letters, 104, 057002.

    Article  ADS  Google Scholar 

  93. Sudayama, T., et al. (2011). Doping-dependent and orbital-dependent band renormalization in \({\rm {Ba}}({\rm {Fe}}_{1-x}{\rm {Co}}_x)_2{\rm {As}}_2\) superconductors. Journal of the Physical Society of Japan, 80, 113707.

    Article  ADS  Google Scholar 

  94. Arham, H. Z., et al. (2012). Detection of orbital fluctuations above the structural transition temperature in the iron pnictides and chalcogenides. Physical Review B, 85, 214515.

    Article  ADS  Google Scholar 

  95. Kontani, H., & Onari, S. (2010). Orbital-fluctuation-mediated superconductivity in iron pnictides: analysis of the five-orbital Hubbard–Holstein model. Physical Review Letters, 104, 157001.

    Article  ADS  Google Scholar 

  96. Yamada, T., & Ōno, Y. (2012). Dynamical mean-field study of local pairing interaction mediated by spin and orbital fluctuations in iron pnictide superconductors. arXiv:1209.4954 (unpublished).

    Google Scholar 

  97. Hardy, F., et al. (2010). Doping evolution of superconducting gaps and electronic densities of states in \({\rm {Ba}}({\rm {Fe}}_{1-x}{\rm {Co}}_x)_2{\rm {As}}_2\) iron pnictides. Europhysics Letters, 91, 47008.

    Article  ADS  Google Scholar 

  98. Grimvall, G. (1976). The electron-phonon interaction in normal metals. Physica Scripta, 14, 63.

    Article  ADS  Google Scholar 

  99. Grimvall, G. (1981). In: E.P. Wohlfarth (Ed.), The electron–phonon interaction in metals, selected topics in solid state physics, North-Holland, Amsterdam.

    Google Scholar 

  100. Suhl, H., Matthias, B. T., & Walker, L. R. (1959). Bardeen–Cooper–Schrieffer theory of superconductivity in the case of overlapping bands. Physical Review Letters, 3, 552–554.

    Article  ADS  MATH  Google Scholar 

  101. Dolgov, O. V., Mazin, I. I., Parker, D., & Golubov, A. A. (2009). Interband superconductivity: contrasts between Bardeen–Cooper–Schrieffer and Eliashberg theories. Physical Review B, 79, 060502.

    Article  ADS  Google Scholar 

  102. Nicol, E. J., Carbotte, J. P., & Timusk, T. (1991). Optical conductivity in high-\(T_{{\rm {c}}}\) superconductors. Physical Review B, 43, 473–479.

    Article  ADS  Google Scholar 

  103. Guo, J., et al. (2010). Superconductivity in the iron selenide \({\rm {K}}_x{\rm {Fe}}_2{\rm {Se}}_2\) \((0\le x\le 1.0) \). Physical Review B, 82, 180520.

    Article  ADS  Google Scholar 

  104. Ying, J. J., et al. (2011). Superconductivity and magnetic properties of single crystals of \({\rm {K}}_{0.75}{\rm {Fe}}_{1.66}{\rm {Se}}_2\) and \({\rm {Cs}}_{0.81}{\rm {Fe}}_{1.61}{\rm {Se}}_2\). Physical Review B, 83, 212502.

    Article  ADS  Google Scholar 

  105. Li, C.-H., Shen, B., Han, F., Zhu, X., & Wen, H.-H. (2011). Transport properties and anisotropy of \({\rm {Rb}}_{1-x}{\rm {Fe}}_{2-y}{\rm {Se}}_2\) single crystals. Physical Review B, 83, 184521.

    Article  ADS  Google Scholar 

  106. Mizuguchi, Y., et al. (2011). Transport properties of the new Fe-based superconductor \({\rm {K}}_x{\rm {Fe}}_2{\rm {Se}}_2\) \((T_{{\rm {c}}} = 33 {\rm {K}})\). Applied Physics Letters, 98, 042511.

    Article  ADS  Google Scholar 

  107. Wang, A. F., et al. (2011). Superconductivity at 32 K in single-crystalline \({\rm {Rb}}_x{\rm {Fe}}_{2-y}{\rm {Se}}_2\). Physical Review B, 83, 060512.

    Article  ADS  Google Scholar 

  108. Fang, M.-H., et al. (2011). Fe-based superconductivity with \(T_{{\rm {c}}}=31\,{\rm {K}}\) bordering an antiferromagnetic insulator in \(({\rm {Tl, K}}){\rm {Fe}}_x{\rm {Se}}_2\). Europhysics Letters, 94, 27009.

    Article  ADS  Google Scholar 

  109. Zhang, A. M., et al. (2012). Effect of iron content and potassium substitution in \(A_{0.8}{\rm {Fe}}_{1.6}{\rm {Se}}_2\) (\(A\)=K, Rb, Tl) superconductors: a Raman scattering investigation. Physical Review B, 86, 134502.

    Article  ADS  Google Scholar 

  110. Tsurkan, V., et al. (2011). Anisotropic magnetism, superconductivity, and the phase diagram of \({\rm {Rb}}_{1-x}{\rm {Fe}}_{2-y}{\rm {Se}}_2\). Physical Review B, 84, 144520.

    Article  ADS  Google Scholar 

  111. Ksenofontov, V., et al. (2011). Phase separation in superconducting and antiferromagnetic \({\rm {Rb}}_{0.8}{\rm {Fe}}_{1.6}{\rm {Se}}_2\) probed by Mössbauer spectroscopy. Physical Review B, 84, 180508.

    Article  ADS  Google Scholar 

  112. Shermadini, Z., et al. (2012). Superconducting properties of single-crystalline \(A_x{\rm {Fe}}_{2-y}{\rm {Se}}_2\) (\(A={\rm {Rb, K}}\)) studied using muon spin spectroscopy. Physical Review B, 85, 100501.

    Article  ADS  Google Scholar 

  113. Texier, Y., et al. (2012). NMR study in the iron-selenide \({\rm {Rb}}_{0.74}{\rm {Fe}}_{1.6}{\rm {Se}}_2\): determination of the superconducting phase as iron vacancy-free \({\rm {Rb}}_{0.3}{\rm {Fe}}_2{\rm {Se}}_2\). Physical Review Letters, 108, 237002.

    Article  ADS  Google Scholar 

  114. Charnukha, A., et al. (2012). Nanoscale layering of antiferromagnetic and superconducting phases in \({\rm {Rb}}_2{\rm {Fe}}_4{\rm {Se}}_5\) single crystals. Physical Review Letters, 109, 017003.

    Article  ADS  Google Scholar 

  115. Liu, Y., Xing, Q., Dennis, K. W., McCallum, R. W., & Lograsso, T. A. (2012). Evolution of precipitate morphology during heat treatment and its implications for the superconductivity in \({\rm {K}}_x{\rm {Fe}}_{1.6+y}{\rm {Se}}_2\) single crystals. Physical Review B, 86, 144507.

    Article  ADS  Google Scholar 

  116. Chen, F., et al. (2011). Electronic identification of the parental phases and mesoscopic phase separation of \({\rm {K}}_x{\rm {Fe}}_{2-y}{\rm {Se}}_2\) superconductors. Physical Review X, 1, 021020.

    Article  ADS  Google Scholar 

  117. Ricci, A., et al. (2011). Nanoscale phase separation in the iron chalcogenide superconductor \({\rm {K}}_{0.8}{\rm {Fe}}_{1.6}{\rm {Se}}_2\) as seen via scanning nanofocused X-ray diffraction. Physical Review B, 84, 060511.

    Article  ADS  Google Scholar 

  118. Cai, P., et al. (2012). Imaging the coexistence of a superconducting phase and a charge-density modulation in the \({\rm {K}}_{0.73}{\rm {Fe}}_{1.67}{\rm {Se}}_2\) superconductor using a scanning tunneling microscope. Physical Review B, 85, 094512.

    Article  ADS  Google Scholar 

  119. Charnukha, A., et al. (2012). Optical conductivity of superconducting \({\rm {Rb}}_2{\rm {Fe}}_4{\rm {Se}}_5\) single crystals. Physical Review B, 85, 100504.

    Article  ADS  Google Scholar 

  120. Homes, C. C., Xu, Z. J., Wen, J. S., & Gu, G. D. (2012). Optical conductivity of superconducting \({\rm {K}}_{0.8}{\rm {Fe}}_{2-y}{\rm {Se}}_2\) single crystals: evidence for a Josephson-coupled phase. Physical Review B, 85, 180510.

    Article  ADS  Google Scholar 

  121. Homes, C. C., Xu, Z. J., Wen, J. S., & Gu, G. D. (2012). Effective medium approximation and the complex optical properties of the inhomogeneous superconductor \({\rm {K}}_{0.8}{\rm {Fe}}_{2-y}{\rm {Se}}_2\). Physical Review B, 86, 144530.

    Article  ADS  Google Scholar 

  122. Wang, C. N., et al. (2012). Macroscopic phase segregation in superconducting \({\rm {K}}_{0.73}{\rm {Fe}}_{1.67}{\rm {Se}}_2\) as seen by muon spin rotation and infrared spectroscopy. Physical Review B, 85, 214503.

    Article  ADS  Google Scholar 

  123. Lazarević, N., et al. (2012). Vacancy-induced nanoscale phase separation in \({\rm {K}}_x{\rm {Fe}}_{2-y}{\rm {Se}}_2\) single crystals evidenced by Raman scattering and powder X-ray diffraction. Physical Review B, 86, 054503.

    Article  ADS  Google Scholar 

  124. Li, W., et al. (2012). Phase separation and magnetic order in K-doped iron selenide superconductor. Nature Physics, 8, 126–130.

    Article  ADS  Google Scholar 

  125. Li, W., et al. (2012). \({\rm {KFe}}_2{\rm {Se}}_2\) is the parent compound of K-doped iron selenide superconductors. Physical Review Letters, 109, 057003.

    Article  ADS  Google Scholar 

  126. Simonelli, L., et al. (2012). Coexistence of different electronic phases in the \({\rm {K}}_{0.8}{\rm {Fe}}_{1.6}{\rm {Se}}_2\) superconductor: a bulk-sensitive hard X-ray spectroscopy study. Physical Review Letters, 85, 224510.

    Google Scholar 

  127. Weyeneth, S., et al. (2012). Superconductivity and magnetism in \({\rm {Rb}}_x{\rm {Fe}}_{2-y}{\rm {Se}}_2\): impact of thermal treatment on mesoscopic phase separation. Physical Review B, 86, 134530.

    Article  ADS  Google Scholar 

  128. Yuan, R. H., et al. (2012). Nanoscale phase separation of antiferromagnetic order and superconductivity in \({\rm {K}}_{0.75}{\rm {Fe}}_{1.75}{\rm {Se}}_2\). Science Reports, 2, 221.

    ADS  Google Scholar 

  129. Shoemaker, D. P., et al. (2012). Phase relations in \({\rm {K}}_x{\rm {Fe}}_{2-y}{\rm {Se}}_2\) and the structure of superconducting \({\rm {K}}_x{\rm {Fe}}_2{\rm {Se}}_2\) via high-resolution synchrotron diffraction. Physical Review B, 86, 184511.

    Article  ADS  Google Scholar 

  130. Wen, H.-H. (2012). Overview on the physics and materials of the new superconductor \({\rm {K}}_x{\rm {Fe}}_{2-y}{\rm {Se}}_2\). Reports on Progress in Physics, 75, 112501.

    Article  Google Scholar 

  131. Yan, X.-W., Gao, M., Lu, Z.-Y., & Xiang, T. (2011). Ternary iron selenide \({\rm {K}}_{0.8}{\rm {Fe}}_{1.6}{\rm {Se}}_2\) is an antiferromagnetic semiconductor. Physical Review B, 83, 233205.

    Article  ADS  Google Scholar 

  132. Xu, M., et al. (2012). Evidence for an \(s\)-wave superconducting gap in \({\rm {K}}_x{\rm {Fe}}_{2-y}{\rm {Se}}_2\) from angle-resolved photoemission. Physical Review B, 85, 220504.

    Article  ADS  Google Scholar 

  133. Bao, W., et al. (2011). A novel large moment antiferromagnetic order in \({\rm {K}}_{0.8}{\rm {Fe}}_{1.6}{\rm {Se}}_2\) superconductor. Chinese Physics Letters, 28, 086104.

    Article  ADS  Google Scholar 

  134. Wang, Z., et al. (2011). Microstructure and ordering of iron vacancies in the superconductor system \({\rm {K}}_y{\rm {Fe}}_x{\rm {Se}}_2\) as seen via transmission electron microscopy. Physical Review B, 83, 140505.

    Article  ADS  Google Scholar 

  135. Maier, T. A., Graser, S., Hirschfeld, P. J., & Scalapino, D. J. (2011). \(d\)-wave pairing from spin fluctuations in the \({\rm {K}}_x{\rm {Fe}}_{2-y}{\rm {Se}}_2\) superconductors. Physical Review B, 83, 100515.

    Article  ADS  Google Scholar 

  136. Saito, T., Onari, S., & Kontani, H. (2011). Emergence of fully gapped \(s_{++}\)-wave and nodal \(d\)-wave states mediated by orbital and spin fluctuations in a ten-orbital model of \({\rm {KFe}}_2{\rm {Se}}_2\). Physical Review B, 83, 140512.

    Article  ADS  Google Scholar 

  137. Wang, F., et al. (2011). The electron pairing of \({\rm {K}}_x{\rm {Fe}}_{2-y}{\rm {Se}}_2\). Europhysics Letters, 93, 57003.

    Article  ADS  Google Scholar 

  138. May, A. F., et al. (2012). Spin reorientation in \({\rm {TlFe}}_{1.6}{\rm {Se}}_2\) with complete vacancy ordering. Physical Review Letters, 109, 077003.

    Article  ADS  Google Scholar 

  139. Yan, X.-W., & Gao, M. (2012). The effect of the Wyckoff position of the K atom on the crystal structure and electronic properties of the compound \({\rm {KFe}}_2{\rm {Se}}_2\). Journal of Physics: Condensed Matter, 24, 455702.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliaksei Charnukha .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Charnukha, A. (2014). Iron-Based Superconductors. In: Charge Dynamics in 122 Iron-Based Superconductors. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01192-9_2

Download citation

Publish with us

Policies and ethics