Skip to main content

Bell Tests in Bipartite Scenarios

  • Chapter
  • First Online:
On the Device-Independent Approach to Quantum Physics

Part of the book series: Springer Theses ((Springer Theses))

  • 859 Accesses

Abstract

If Bell experiments conducted so far have always suffered from one of the loophole described above, technological advances suggest that both the locality and the detection loophole might soon be closable within the same experiment. In order to make this happen, novel proposals taking into account present capabilities are highly welcome. Here we describe a proposal for a loophole-free Bell test, and analyse its feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note however that the total transmission efficiency also includes the collection efficiency, i.e. the probability with which the photon emitted by the atom is collected into a fibre. Collection efficiencies of the order of 50 % have already been demonstrated using a cavity (see [4]).

References

  1. J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  2. H. Nha, H.J. Carmichael, Phys. Rev. Lett. 93, 020401 (2004)

    Article  ADS  Google Scholar 

  3. F. Henkel, M. Krug, J. Hofmann, W. Rosenfeld, M. Weber, H. Weinfurter, Phys. Rev. Lett. 105, 253001 (2010)

    Article  ADS  Google Scholar 

  4. J.-D. Bancal, N. Gisin, Y.-C. Liang, S. Pironio, Phys. Rev. Lett. 106, 250404 (2011)

    Article  ADS  Google Scholar 

  5. A. Cabello, J.-A. Larsson, Phys. Rev. Lett. 98, 220402 (2007)

    Google Scholar 

  6. D. Cavalcanti, N. Brunner, P. Skrzypczyk, A. Salles, V. Scarani, Phys. Rev. A 84, 022105 (2011)

    Article  ADS  Google Scholar 

  7. M. Anderlini, P.J. Lee, B.L. Brown, J. Sebby-Strabley, W.D. Phillips, J.V. Porto, Nature 448, 452–456 (2007)

    Article  ADS  Google Scholar 

  8. R.F. Werner, Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  9. M. Navascués, H. Wunderlich, Proc. Roy. Soc. Lond. A 466, 881–890 (2009)

    Article  ADS  Google Scholar 

  10. A. Aspect, http://arxiv.org/abs/quant-ph/0402001

  11. P. Trojek, C. Schmid, M. Bourennane, H. Weinfurter, C. Kurtsiefer, Opt. Expr. 12, 276 (2004)

    Article  ADS  Google Scholar 

  12. D. Collins, N. Gisin, J. Phys. A: Math. and Gen. 37, 1775 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. N. Brunner, N. Gisin, Phys. Lett. A 372, 3162 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. D. Avis, H. Imai, T. Ito, J. Phys. A: Math. and Gen. 39, 11283 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. S. Pironio, A. Acín, S. Massar, A. Boyer de la Giroday, D.N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T.A. Manning, C. Monroe, Nature 464, 1021–1024 (2010)

    Article  ADS  Google Scholar 

  16. S. Wehner, Phys. Rev. A 73, 022110 (2006)

    Article  ADS  Google Scholar 

  17. A. Elitzur, S. Popescu, D. Rohrlich, Phys. Lett. A 162, 25 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  18. L. Aolita, R. Gallego, A. Acín, A. Chiuri, G. Vallone, P. Mataloni, A. Cabello, Phys. Rev. A 85, 032107 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Daniel Bancal .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bancal, JD. (2014). Bell Tests in Bipartite Scenarios. In: On the Device-Independent Approach to Quantum Physics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01183-7_2

Download citation

Publish with us

Policies and ethics