Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 366 Accesses

Abstract

Given the complexity of the background processes described above, a highly versatile, fast and precise simulation code is required. Kassiopeia is the primary simulation package for the KATRIN experiment fulfilling all these requirements. It is written in C++, and comprised of specific modules for the creation, trajectory calculation in electro-magnetic fields and detection of particles in Si-based detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Glück, Axisymmetric electric field calculation with zonal harmonic expansion. Prog. Electromagnet. Res. B 32, 319–350 (2011)

    Google Scholar 

  2. F. Glück, Axisymmetric magnetic field calculation with zonal harmonic expansion. Prog. Electromagnet. Res. B 32, 351–388 (2011)

    Google Scholar 

  3. W. Käfer, Investigation of the KATRIN sensitivity. PhD thesis, KIT, 2012

    Google Scholar 

  4. E. Browne, Nuclear data sheets for A = 215, 219, 223, 227, 231. Nucl. Data Sheets 93(4), 763–1061 (2001)

    Article  ADS  Google Scholar 

  5. S.C. Wu, Nuclear data sheets for A = 216. Nucl. Data Sheets 108(5), 1057–1092 (2007)

    Article  ADS  Google Scholar 

  6. M.S. Rapaport, F. Asaro, I. Perlman, \(K\)-shell electron shake-off accompanying alpha decay. Phys. Rev. C 11, 1740–1745 (1975)

    Article  ADS  Google Scholar 

  7. M.S. Rapaport, F. Asaro, I. Perlman, \(M\)- and \(L\)-shell electron shake-off accompanying alpha decay. Phys. Rev. C 11, 1746–1754 (1975)

    Article  ADS  Google Scholar 

  8. M.S. Freedman, in Ionization by Nuclear Transitions, Conference: Summer course in atomic physics, Carry-le-Rouet, France, 31 Aug 1975; Other Information: Orig. Receipt Date: 30-JUN-76, p. 18, Jan 1975

    Google Scholar 

  9. J. Baró, J. Sempau, J. Fernández-Varea, F. Salvat, PENELOPE: an algorithm for Monte Carlo simulation of the penetration and energy loss of electrons and positrons in matter. Nucl. Instrum. Methods Phys. Res., Sect. B 100(1), 31–46 (1995)

    Article  ADS  Google Scholar 

  10. PENELOPE homepage, http://www.oecd-nea.org/tools/abstract/detail/nea-1525. Last update: 23 May 2011

  11. S. Szucs, J.M. Delfosse, Charge Spectrum of Recoiling \(^{216}\) Po in the \(\alpha \)-Decay of \(^{220}\)Rn. Phys. Rev. Lett. 15, 163–165 (1965)

    Article  ADS  Google Scholar 

  12. J.S. Hansen, Internal ionization during alpha decay: a new theoretical approach. Phys. Rev. A 9, 40–43 (1974)

    Article  ADS  Google Scholar 

  13. F. Glück, Runge-Kutta method for numerical solution of differential equation system. http://fuzzy.fzk.de/bscw/bscw.cgi/d479152/rungekutta.pdf

  14. P.W. Sharp, Numerical comparisons of some explicit Runge-Kutta pairs of orders 4 through 8. ACM Trans. Math. Softw. 17, 387–409 (1991)

    Article  MATH  Google Scholar 

  15. J. Barrett, Embedded Runge-Kutta Steppers for KMath. http://fuzzy.fzk.de/bscw/bscw.cgi/15316

  16. S. Filippi, J. Gräf, New Runge Kutta Nystroem formula-pairs of order 8(7), 9(8), 10(9) and 11(10) for differential equations of the form \(y^{\prime \prime } = f(x, y)\). J. Comput. Appl. Math. 14(3), 361–370 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. J.C. Butcher, Numerical Methods for Ordinary Differential Equations (Wiley, Ltd., 2005)

    Google Scholar 

  18. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd edn. (Cambridge University Press, New York, 2007)

    Google Scholar 

  19. J. Formaggio, RobinHood - A new Electrostatics Solver. KATRIN Collaboration meeting, Oct 2010

    Google Scholar 

  20. J. Formaggio, RobinHood, FFTMs, GPUs.. oh MY. KATRIN Collaboration meeting, Mar 2011

    Google Scholar 

  21. P. Renschler, KESS - A new Monte Carlo simulation code for low-energy electron interactions in silicon detectors. PhD thesis, KIT, 2011

    Google Scholar 

  22. F. Salvat, A. Jablonski, C.J. Powell, elsepa-Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules. Comput. Phys. Commun. 165(2), 157–190 (2005)

    Article  ADS  Google Scholar 

  23. D.R. Penn, Electron mean-free-path calculations using a model dielectric function. Phys. Rev. B 35, 482–486 (1987)

    Article  ADS  Google Scholar 

  24. H. Bichsel, Straggling in thin silicon detectors. Rev. Mod. Phys. 60, 663–699 (1988)

    Article  ADS  Google Scholar 

  25. R.C. Alig, S. Bloom, C.W. Struck, Scattering by ionization and phonon emission in semiconductors. Phys. Rev. B 22, 5565–5582 (1980)

    Article  ADS  Google Scholar 

  26. D.T. Cromer, D. Liberman, LASL report, vol. 4403, 1970

    Google Scholar 

  27. G. Fraser, A. Abbey, A. Holland, K. McCarthy, A. Owens, A. Wells, The X-ray energy response of silicon Part A. Theory. Nucl. Instrum. Methods Phys. Res., Sect. A 350(1–2), 368–378 (1994)

    Article  ADS  Google Scholar 

  28. J.M. Fernández-Varea, X. Llovet, F. Salvat, Cross sections for electron interactions in condensed matter. Surf. Interface Anal. 37, 824–832 (2005)

    Article  Google Scholar 

  29. M. Hötzel, Berechnung von KATRIN Messspektren unter Einbeziehung der fensterlosen gasförmigen Tritiumquelle. Master’s thesis, KIT, 2009

    Google Scholar 

  30. W. Repko, C. Wu, Radiative corrections to the end point of the tritium \(\beta \)-decay spectrum. Phys. Rev. C28(1983), 2433 (1983)

    ADS  Google Scholar 

  31. N. Doss et al., Molecular effects in investigations of tritium molecule \(\beta \)-decay endpoint experiments. Phys. Rev. C 73(2006), 025502 (2006)

    Article  ADS  Google Scholar 

  32. N. Doss, J. Tennyson, Excitations to the electronic continuum of \(3\rm {HeT}^{+}\) in investigations of the \({\rm T}_2\) beta-decay experiments. J. Phys. B: At. Mol. Opt. Phys 41(2008), 125701 (2008)

    Article  ADS  Google Scholar 

  33. F. Sharipov, Numerical calculation of tritium flow through the KATRIN beam line. KATRIN, Report, 2003

    Google Scholar 

  34. F. Sharipov, “Influence of temperature variations and acoustic waves on the column density. Calculations of the velocity distribution function”. KATRIN Report, 2009

    Google Scholar 

  35. K. Eitel et al., Estimate of the KATRIN sensitivity on the neutrino mass. KATRIN, Report, 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Mertens .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mertens, S. (2014). Monte Carlo Simulation Package. In: Background Processes in the Electrostatic Spectrometers of the KATRIN Experiment. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-01177-6_4

Download citation

Publish with us

Policies and ethics