Advertisement

Design of Double-Pole Four-Throw RF Switch

  • Viranjay M. Srivastava
  • Ghanshyam Singh
Chapter
Part of the Analog Circuits and Signal Processing book series (ACSP, volume 122)

Abstract

The industrial, scientific, and medical (ISM) radio bands were originally reserved for the use of radio-frequency (RF) energy for industrial, scientific, and medical purposes such as radio-frequency process heating, microwave ovens, and medical diathermy machines. The powerful emissions of these devices can create electromagnetic interference and disrupt radio communication using the same frequency, so these devices were limited to certain bands of frequencies. In general, communication equipment operating in these bands must accept any interference generated by ISM equipment [1, 2]. Nowadays CMOS wideband switches are designed primarily to meet the requirements of devices transmitting at ISM band frequencies (900 MHz and above). The low insertion loss, high isolation between ports, low distortion, and low current consumption of these devices make them an excellent solution for several high-frequency applications [3].

Keywords

Insertion Loss Negative Bias Temperature Instability Power Handling Capability CMOS Switch GaAs MESFET 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Granzner, S. Thiele, and Frank Schwierz, “Quantum effects on the gate capacitance of tri-gate SOI MOSFETs,” IEEE Trans. on Electron Devices, vol. 57, no. 12, pp. 3231–3238, 2010.Google Scholar
  2. 2.
    N. Wang, “Transistor technologies for RFICs in wireless applications,” Microwave J., pp. 98–110, Feb. 1998.Google Scholar
  3. 3.
    Jack Browne, “More power per transistor translates into smaller amplifiers,” Microwaves and RF, vol. 6, pp. 132–136, Jan. 2001.Google Scholar
  4. 4.
    Peerapong Uthansakul, Nattaphat Promsuwanna, and Monthippa Uthansakul, “Performance of antenna selection in MIMO system using channel reciprocity with measured data,” Int. J. of Antennas and Propagation, vol. 2011, pp. 1–10, 2011.Google Scholar
  5. 5.
    S. Sanayei and N. Aria, “Antenna selection in MIMO systems,” IEEE Communications Magazine, vol. 42, no. 10, pp. 68–73, Oct. 2004.Google Scholar
  6. 6.
    A. M. Street, RF Switch Design, IEE Training Course, United Kingdom, vol. 4, pp. 1–7, April 2000.Google Scholar
  7. 7.
    Kevin Walsh, RF Switches Guide Signals in Smart Phones, Skyworks Solutions Inc., Woburn, MA, Sept. 2010.Google Scholar
  8. 8.
    Application note, Nanomount PIN diode switches data sheet, AN 708, Microsemi Corporation, California, USA, 2006.Google Scholar
  9. 9.
    Application note, Design with PIN Diodes, APN 1002, Skyworks Solutions Inc., Woburn, MA, July 2005.Google Scholar
  10. 10.
    Application note, GaAs T/R switch MMIC data sheet, HMC223MS8, Hittite Microwave Corporation, Massachusetts, USA, Feb. 2001.Google Scholar
  11. 11.
    M. Steyaert, J. Janssens, B. Muer, M. Borremans, and N. Itoh, “A 2 V CMOS cellular transceiver front-end,” IEEE J. of Solid State Circuits, vol. 35, no. 12, pp. 1895–1907, Dec. 2000.Google Scholar
  12. 12.
    S. Ahmed, C. Ringhofer, and D. Vasileska, “An effective potential approach to modeling 25 nm MOSFET devices,” J. of Computational Electronics, vol. 9, no. 3-4, pp. 197–200, Oct. 2010Google Scholar
  13. 13.
    Joseph J. Carr, Secrets of RF Circuit Designs, 3rd Edition, Tata McGraw-Hill, India, 2004Google Scholar
  14. 14.
    R. Langevelde and F. Klaassen, “An explicit surface potential based MOSFET model for circuit simulation,” Solid State Electronics, vol. 44, no. 3, pp. 409–418, March 2000.Google Scholar
  15. 15.
    Sungmo Kang and Yusuf Leblebichi, CMOS Digital Integrated Circuits Analysis and Design, 3rd Edition, McGraw-Hill, New York, USA, 2002.Google Scholar
  16. 16.
    Maria Villarroya, Eduard Figueras, and Nuria Barniol, “A platform for monolithic CMOS-MEMS integration on SOI wafers,” J. of Micromechanics and Microengineering, vol. 16, no. 10, pp. 2203–2210, Oct. 2006.Google Scholar
  17. 17.
    Maria Villarroya and Nuria Barniol, “CMOS-SOI platform for monolithic integration of crystalline silicon MEMS,” Electronics Letters, vol. 42, no. 14, pp. 800–801, July 2006.Google Scholar
  18. 18.
    J. Giner and Nuria Barniol, “VHF monolithically integrated CMOS-MEMS longitudinal bulk acoustic resonator,” Electronics Letters , vol. 48, no. 9, pp. 514–516, April 2012.Google Scholar
  19. 19.
    F. J. Huang and O. Kenneth, “A 0.5 μm CMOS T/R switch for 900 MHz wireless applications,” IEEE J. of Solid State Circuits, vol. 36, no. 3, pp. 486–492, March 2001.Google Scholar
  20. 20.
    T. Ohnakado, A. Furukawa, E. Taniguchi, and T. Oomori, “A 1.4 dB insertion loss, 5 GHz transmit/receive switch utilizing novel depletion layer extended transistors in 0.18 μm CMOS process,” Proc. of Symp. on VLSI Technology, Honolulu, USA, 11-13 June 2002, pp. 162–163.Google Scholar
  21. 21.
    Lawrence E. Larson, “Integrated circuit technology options for RFICs present status and future directions,” IEEE J. of Solid State Circuits, vol. 33, no. 3, pp. 387–399, March 1998.Google Scholar
  22. 22.
    D. Su, M. Zargari, P. Yue, D. Weber, B. Kaczynski, and B. Wooley, “A 5 GHz CMOS transceiver for IEEE 802.11a wireless LAN,” Proc. of IEEE Int. Conf. on Solid State Circuits, San Francisco, California, USA, 7 Feb. 2002, pp. 92–93.Google Scholar
  23. 23.
    D. Su, M. Zargari, P. Yue, D. Weber, B. Kaczynski, and B. Wooley, “A 5 GHz CMOS transceiver for IEEE 802.11a wireless LAN systems,” IEEE J. of Solid State Circuits, vol. 37, no. 12, pp. 1688–1694, 2002.Google Scholar
  24. 24.
    M. Uzunkol and G. M. Rebeiz, “A low loss 50-70 GHz SPDT switch in 90 nm CMOS,” IEEE J. of Solid State Circuits, vol. 45, no. 10, pp. 2003–2007, Oct. 2010.Google Scholar
  25. 25.
    Viranjay M. Srivastava, K. S. Yadav, and G. Singh, “DP4T RF CMOS switch: A better option to replace SPDT switch and DPDT switch,” Recent Patents on Electrical and Electronic Engineering, vol. 5, no. 3, pp. 244–248, Oct. 2012.Google Scholar
  26. 26.
    C. Lee, B. Banerjee, and J. Laskar, “Novel T/R switch architectures for MIMO applications,” IEEE Microwave Symp. Digest, vol. 2, pp. 1137–1140, June 2004.Google Scholar
  27. 27.
    N. Talwalkar, C. Patrick Yue, and S. Simon Wong, “Integrated CMOS transmit-receive switch using LC tuned substrate bias for 2.4 GHz and 5.2 GHz applications,” IEEE J. of Solid State Circuits, vol. 39, no. 6, pp. 863–870, June 1989.Google Scholar
  28. 28.
    J. P. Carmo, P. M. Mendes, C. Couto, and J. H. Correia, “A 2.4 GHz RF CMOS transceiver for wireless sensor applications,” Proc. of Int. Conf. on Electrical Engineering, Coimbra, 2005, pp. 902–905.Google Scholar
  29. 29.
    Piya Mekanand and Duangrat Eungdamorang, “DP4T CMOS switch in a transciever of MIMO system,” Proc. of 11 th IEEE Int. Conf. of Advanced Communication Technology, Korea, 15–18 Feb. 2009, pp. 472–474.Google Scholar
  30. 30.
    P. H. Woerlee, M. J. Knitel, and A. J. Scholten, “RF CMOS performance trends,” IEEE Trans. on Electron Devices, vol. 48, no. 8, pp. 1776–1782, Aug. 2001.Google Scholar
  31. 31.
    Neil H. E. Weste and Kamran Eshraghian, Principles of CMOS VLSI design: A system perspective, 2nd Edition, Addison Wesley, USA, 2005.Google Scholar
  32. 32.
    J. P. Carmo, P. M. Mendes, C. Couto, and J. H. Correia, “A 2.4 GHz wireless sensor network for smart electronic shirts integration,” Proc. of IEEE Int. Symp. on Industrial Electronics, Vigo, Spain, 4–7 June 2007, pp. 1356–1359. Google Scholar
  33. 33.
    Chien Cheng Wei, Hsien Chin Chiu, Shao Wei Lin, Ting Huei Chen, Jeffrey S. Fu, and Feng Tso Chien, “A comparison study of CMOS T/R switches using gate/source terminated field plate transistors,” Microelectronic Engineering, vol. 87, no. 2, pp. 225–229, Feb. 2010.Google Scholar
  34. 34.
    C. Tinella, J. Fournier, D. Belot, and V. Knopik, “A high performance CMOS SOI antenna switch for the 2.5 GHz to 5 GHz band,” IEEE J. of Solid State Circuits, vol. 38, no. 7, pp. 1279–1283, July 2003.Google Scholar
  35. 35.
    Mei Chao Yeh, Zuo Min Tsai, and Chih Ping Chao, “A millimeter-wave wideband SPDT switch with traveling-wave concept using 0.13-μm CMOS process,” IEEE Int. Microwave Symposium Digest, pp. 4, 12–17 June 2005.Google Scholar
  36. 36.
    T. Quemerais, L. Moquillon, J. Fournier, and P. Benech, “A SPDT switch in a standard 45-nm CMOS process for 94 GHz applications,” Proc. of European Microwave Conf., Paris, France, 26 Sept.–1 Oct. 2010, pp. 425–428.Google Scholar
  37. 37.
    T. Dinc, S. Zihir, and Y. Gurbuz, “CMOS SPDT T/R switch for X-band, on-chip radar applications,” IET Electronics Letters, vol. 46, no. 20, pp. 1382–1384, 2010.Google Scholar
  38. 38.
    Chen Lei, Tian Liang, Zhou Jin, Huang Ai bo, and Lai Zongsheng, “A high performance PD SOI CMOS single-pole double-throw T/R switch for 2.4 GHz wireless applications,” Proc. of 5 th Int. Conf. on Wireless Communications, Networking and Mobile Computing, Beijing, China, 24–26 Sept. 2009, pp. 1–4.Google Scholar
  39. 39.
    Siti Maisurah, S. Rasidah, Abdul Rahim, and Y. M. Razman, “A 0.18 μm CMOS T/R switch for 900 MHz wireless application,” Proc. of IEEE Int. Conf. on RF and Microwave, Kuala Lumpur, Malaysia, 2–4 Dec. 2008, pp. 176–179.Google Scholar
  40. 40.
    Mei Chao Yeh, Zuo Min Tsai, and Huei Wang, “A miniature DC to 50 GHz CMOS SPDT distributed switch,” Proc. of European Symp. on Gallium Arsenide and Other Semiconductor Application, Paris, France, 3–4 Oct. 2005, pp. 665–668.Google Scholar
  41. 41.
    S. F. Chao, H. Wang, C. Y. Su, and J. G. Chern, “A 50 to 94 GHz CMOS SPDT switch using traveling wave concept,” IEEE Microwave and Wireless Components Letters, vol. 17, no. 2, pp. 130–132, Feb. 2007.Google Scholar
  42. 42.
    Viranjay M. Srivastava, K. S. Yadav, and G. Singh, “Capacitive model and S-parameters of double-pole four-throw double-gate RF CMOS switch,” Int. J. of Wireless Engineering and Technology, vol. 2, no. 1, pp. 15–22, Jan. 2011.Google Scholar
  43. 43.
    Application Note and Product catalogue, RF switch performance advantages of ultra CMOS technology over GaAs technology, AN 18, Peregrine Semiconductor, USA.Google Scholar
  44. 44.
    Joe Grimm, CMOS RFIC switches: Simple and inexpensive, the latest 2.5 GHz versions pose a legitimate challenge to GaAs switches, A Product Catalogue, RFIC Switches, California Eastern Laboratories, Santa Clara, CA, USA, Jan. 2004.Google Scholar
  45. 45.
    S. H. Lee, C. S. Kim, and H. K. Yu, “A small signal RF model and its parameter extraction for substrate effects in RF MOSFETs,” IEEE Trans. on Electron Devices, vol. 48, no. 7, pp. 1374–1379, July 2001.Google Scholar
  46. 46.
    Yuan Taur, and Tak H. Ning, Fundamentals of Modern VLSI Devices, 1st Edition, Cambridge University Press, United Kingdom, 2008.Google Scholar
  47. 47.
    Viranjay M. Srivastava, K. S. Yadav, and G. Singh, “Analysis of drain current and switching speed for SPDT switch and DPDT switch with the proposed DP4T RF CMOS switch,” J. of Circuits, Systems and Computers, vol. 21, no. 4, pp. 1–18, June 2012.Google Scholar
  48. 48.
    Sieu Ha, You Zhou, and P. Treadway, “Electrical switching dynamics and broadband microwave characteristics of VO2 radio frequency devices,” J. of Applied Physics, vol. 113, no. 18, pp. 184501–184507, May 2013.Google Scholar
  49. 49.
    Mei Yeh, Zuo Tsai, and Ying Chang, “Design and analysis for a miniature CMOS SPDT switch using body floating technique to improve power performance,” IEEE Trans. on Microwave Theory and Techniques, vol. 54, no. 1, pp. 31–39, Jan. 2006.Google Scholar
  50. 50.
    Viranjay M. Srivastava, K. S. Yadav, and G. Singh, “Design and performance analysis of double-gate MOSFET over single-gate MOSFET for RF switch,” Microelectronics Journal, vol. 42, no. 3, pp. 527–534, March 2011.CrossRefGoogle Scholar
  51. 51.
    Viranjay M. Srivastava, K. S. Yadav, and G. Singh, “Analysis of double gate CMOS for double-pole four-throw RF switch design at 45-nm technology,” J. of Computational Electronics, vol. 10, no. 1–2, pp. 229–240, June 2011.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Viranjay M. Srivastava
    • 1
  • Ghanshyam Singh
    • 1
  1. 1.Department of Electronics and Communication EngineeringJaypee University of Information TechnologySolanIndia

Personalised recommendations