Skip to main content

Psychosurgical Procedures

  • Chapter
  • First Online:
Psychosurgery
  • 1048 Accesses

Abstract

There are two types of psychosurgical interventions. The first consists in creating a lesion via stereotaxy using heat (thermocoagulation) or ionizing radiation (radiosurgery) in one or more precise areas of the brain. The second, more recent type of intervention uses stimulation to target both deep brain structures and the cortex or the vagus nerve. In contrast to previous techniques, the effects of stimulation are reversible and adaptable and make use of implanted devices: electrodes and stimulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cf. p. 123.

  2. 2.

    Cf. pp. 202–204.

  3. 3.

    Cf. p. 358.

  4. 4.

    Cf. p. 345.

  5. 5.

    Chapter 4, p. 271.

  6. 6.

    Chapter 5, p. 418.

  7. 7.

    Talairach was the first to discuss the subject while Leksell published the first clinical results and popularized the technique.

  8. 8.

    Cf. p. 125.

  9. 9.

    Cf. p. 90.

  10. 10.

    Cf. p. 124.

  11. 11.

    Cf. p. 128.

  12. 12.

    Cf. pp. 141 and 143.

  13. 13.

    DTI is a technique using MRI to calculate the diffusion of water molecules for each pixel of the image. The water molecule is constrained in its diffusion by its surroundings. This type of imaging enables the position and orientation of fibers such as white matter bundles to be calculated indirectly.

  14. 14.

    Cf. physiopathology of OCD p. 278.

  15. 15.

    Cf. p. 187.

  16. 16.

    Cf. the chapter summarizing the scales used in OCD, p. 273.

  17. 17.

    Cf. p. 184.

  18. 18.

    Ibid.

  19. 19.

    See also p. 326.

  20. 20.

    Cf. p. 310.

  21. 21.

    Cf. p. 95.

  22. 22.

    Cf. p. 133.

  23. 23.

    Cf. p. 137.

  24. 24.

    Cf. p. 49.

  25. 25.

    An old X-ray imaging technique using a gas as a contrast medium to obtain images of ventricles in the brain (Fig. 3.7). The gas was injected by lumbar puncture, suboccipitally or even by direct puncture of the ventricles after trepanning. This test was replaced by MRI or brain scans used today.

  26. 26.

    Cf. p. 358.

  27. 27.

    Hyperactivity in the temporal cortex is witnessed, in particular of the hippocampus and of the amygdala.

  28. 28.

    Hyperactivity of the central gray nuclei and of the thalamus can also be seen.

  29. 29.

    Cf. p. 180.

  30. 30.

    Ibid.

  31. 31.

    Cf. p. 418.

  32. 32.

    Cf. p. 93.

  33. 33.

    Cf. p. 47.

  34. 34.

    Cf. p. 93.

  35. 35.

    This sort of operation is unthinkable with invasive surgical procedures such as stereotactic thermocoagulation. However, it would be conceivable in operations done with radiosurgery. In such a “sham” procedure, a stereotaxic frame is placed on the patient’s skull, the imaging is done but no radiation is released when the patient is inside the radiosurgery device. A team from São Paulo performed this procedure on an OCD patient. Over a year later, the same procedure was done, but this time releasing gamma rays. Thus, the patient was his own witness [115].

  36. 36.

    This lacuna must however be nuanced in cases of severely depressed patients: this effect is considered marginal [338].

  37. 37.

    Gy is the symbol for Gray, a unit that measures the amount of energy released.

  38. 38.

    Scale of OCD severity (cf. p. 273).

  39. 39.

    Details of this technique cf. p. 457.

  40. 40.

    We have evoked p. 33 the memory of Clovis Vincent, who along with Thierry de Martel was one of the pioneers of neurosurgery in France. Vincent was a war surgeon during WWI. He was known for his “torpillage” technique: he used electrical stimulations to distinguish traumatised soldiers from those only pretending to be traumatized.

    This French expression came from one of his patients who stated that “it turns you upside down like a torpedo (“torpille” in French).” Military staff and then the Undersecretary for Health, J. Godart became aware of this dubious practice and stated, “the emotion that it would arouse in Tours and in that region the procedure implemented by the head-physician of the neurology centre, Clovis Vincent […]. This procedure called “torpillage” was actually adopted and its therapeutic value shown at the meeting of neurologic physicians gathered under my initiative and who defined treatment methods for nervous system functional disorders […]. Do not take into account the emotions of the public, which gets easily impressed when not well informed. Nau, J. Y. 2011. When Dr. Clovis Vincent “torpedoed” his patients. Rev Med Suisse 7:630–631.

  41. 41.

    Cf. p. 123.

  42. 42.

    The ethicists J. Gybels, Jan and J. Fins (President of the American BioEthics Society), the psychiatrists L. Gabriel, P. Cosyns, D. Malone, B. Greenberg, S. Rasmunsen, the neurosurgeons A. Rezai, G. Friehs, B. Meryerson and the neurologist E. Montgomery.

  43. 43.

    Cf. ethical safe-guards p. 443.

  44. 44.

    Cf. pp. 210 and 290.

  45. 45.

    Cf. p. 129.

  46. 46.

    Cf. p. 146.

  47. 47.

    Cf. p. 463.

  48. 48.

    Cf. p. 123.

  49. 49.

    Cf. p. 103.

  50. 50.

    Ibid.

  51. 51.

    Ibid.

  52. 52.

    This distance can change depending on the type of electrode. Electrodes destined to stimulate “small” structures like the subthalamic nucleus, have more closely spaced contacts than those conceived for the stimulation of larger structures like the globus pallidus. The types of electrodes change depending on the area of stimulation.

  53. 53.

    Other noninvasive brain recording techniques are those performed on the surface of the cortex like electroencephalograms (EEG). DBS electrode recording offers the advantage of having a very good temporal and spatial resolution and a good sound-to-noise ratio (SNR).

  54. 54.

    Cf. Conflicts of interest p. 432.

  55. 55.

    Cf. p. 187.

  56. 56.

    Cf. 164.

  57. 57.

    This test can be associated with the previous one to correct image distortions seen on MRI related to the magnetic field.

  58. 58.

    This delay can vary depending on the chosen target. A clinical effect may occur in a matter of seconds which is the case of subgenual cortex DBS. Mayberg observes in the first five patients: “They all mentioned spontaneously acute effects like ‘sudden calm or lightness,’ ‘disappearance of the void,’ ‘a feeling of growing awareness’ […] in response to this electrical stimulation” [240].

  59. 59.

    Cf. p. 123.

  60. 60.

    Cf. p. 93.

  61. 61.

    Cf. p. 95.

  62. 62.

    Cf. p. 92.

  63. 63.

    Cf. p. 124.

  64. 64.

    Cf. p. 129.

  65. 65.

    Cf. pp.142 and 143.

  66. 66.

    Cf. also p. 358 about anorexia nervosa and p. 366 about the treatment of addiction using deep brain stimulation.

  67. 67.

    Cf. the complications of capsulotomy, p. 179.

  68. 68.

    Cf. p. 129.

  69. 69.

    Cf. p. 278.

  70. 70.

    Cf. p. 139.

  71. 71.

    Cf. p. 93.

  72. 72.

    Cf. p. 128.

  73. 73.

    Cf. p. 125.

  74. 74.

    Cf. p. 167.

  75. 75.

    Cf. p. 193.

  76. 76.

    Cf. p. 146.

  77. 77.

    Cf. p. 187.

  78. 78.

    Cf. p. 146.

  79. 79.

    Cf. p. 359.

  80. 80.

    Cf. p. 139.

  81. 81.

    It is the detailed representation of the body or functions within a nerve structure.

  82. 82.

    However, certain authors have questioned the validity of this animal-based model which compares these behavior iterations in monkeys with the rituals of an obsessive–compulsive disorder subject [220].

  83. 83.

    Cf. p. 321.

  84. 84.

    Cf. p. 232.

  85. 85.

    Cf. p. 128.

  86. 86.

    Cf. p. 129.

  87. 87.

    Cf. p. 143.

  88. 88.

    Cf. p. 98.

  89. 89.

    Cf. p. 129.

  90. 90.

    Cf. p. 112.

  91. 91.

    Cf. p. 149.

  92. 92.

    In Lozano’s study, two infections at the implant sites in the scalp and the thorax and a cutaneous erosion were recorded. The complications of this DBS technique and its frequencies are detailed on p. 206.

  93. 93.

    This hypothesis implies that high frequency stimulation (100–180 Hz) would have an excitatory effect, and not an inhibitory effect, when it is applied to axons. The inhibitory effect concerns neuron and not axons [160].

  94. 94.

    Cf. p. 146.

  95. 95.

    Cf. p. 150.

  96. 96.

    Ibid.

  97. 97.

    Cf. p. 112.

  98. 98.

    Cf. p. 187.

  99. 99.

    Cf. p. 189.

  100. 100.

    Cf. “Lesion or stimulation” p. 457 for more on this debate.

  101. 101.

    Many of the rTMS targets were assessed in the treatment of OCD. The studies targeting the dorsolateral prefrontal cortex were inconclusive. However, the supplementary motor area and the orbifrontal cortex seem promising.

  102. 102.

    Anterograde amnesia is partial or even complete loss of memory posterior to the disease, the accident, or the operation. The individual becomes incapable of building new memories. We could compare this situation to a computer in which the hard drive could read all the data but a defective writing mechanism would prevent new information from being recorded.

  103. 103.

    Phosphene phenomena are flashes or lights appearing in the visual field. They can be caused by mechanical, electrical, or magnetic stimulation of the retina or the visual cortex, but also by a cellular destruction in the visual system.

  104. 104.

    Cf. anatomy p. 90.

  105. 105.

    Usually this area, which corresponds to area 46 and to a lesser extent area 9, is situated 5 cm in front of the point of scalp at which the right thumb can be made to contract using a coil.

  106. 106.

    In 2009, Amiaz and et al. reported on a randomized, double-blinded study of a series of 48 smoking patients used to consuming at least 20 cigarettes every day. They received ten sessions of transcranial magnetic stimulation every day for 10 days. Results showed an objective decrease in tobacco use in the patients who were actually being stimulated [300].

  107. 107.

    During the operation, the neuronavigation system allows a patient’s MRI images to be superimposed over her actual brain, the way a GPS superimposes a map over the actual route. It is then possible, with control panels, to precisely guide the progression of the electrode at the surface of the cortex.

  108. 108.

    Cf. p. 98.

  109. 109.

    Cf. p. 103.

  110. 110.

    Cf. p. 107.

  111. 111.

    Cf. p. 112.

  112. 112.

    Cf. p. 93.

  113. 113.

    Cf. p. 149.

  114. 114.

    Ibid.

  115. 115.

    SPECT and O-PET Scan.

  116. 116.

    Cf. p. 95.

  117. 117.

    Cf. p. 98.

  118. 118.

    Cf. p. 103.

  119. 119.

    Cf. p. 236.

  120. 120.

    Remission signifies a decrease by more than half of the score on the Hamilton scale (HRSD) cf. p. 313, and response signifies a score below 10.

References

  1. Spiegel EA, Wycis HT, Marks M, Lee AJ (1947) Stereotaxic apparatus for operations on the human brain. Science 106(2754):349–350. doi:10.1126/science.106.2754.349 106/2754/349 [pii]

    CAS  PubMed  Google Scholar 

  2. Schaltenbrand G, Walker AE (1982) Stereotaxy of the human brain : anatomical, physiological, and clinical applications, 2nd (revised and enlarged edition) Thieme, Stratton; Thieme-Stratton, New York

    Google Scholar 

  3. Mai JK, Paxinos G, Voss T (2008) Atlas of the human brain. Academic Press, San Diego

    Google Scholar 

  4. Leiphart JW, Valone III FH (2010) Stereotactic lesions for the treatment of psychiatric disorders. J Neurosurg 113(6):1204–1211. doi:10.3171/2010.5.JNS091277

    PubMed  Google Scholar 

  5. Lipsman N, McIntyre RS, Giacobbe P, Torres C, Kennedy SH, Lozano AM (2010) Neurosurgical treatment of bipolar depression: defining treatment resistance and identifying surgical targets. Bipolar Disord 12(7):691–701. doi:10.1111/j.1399-5618.2010.00868.x

    PubMed  Google Scholar 

  6. Mpakopoulou M, Gatos H, Brotis A, Paterakis KN, Fountas KN (2008) Stereotactic amygdalotomy in the management of severe aggressive behavioral disorders. Neurosurg Focus 25(1):E6. doi:10.3171/FOC/2008/25/7/E6

    PubMed  Google Scholar 

  7. Fountas KN, Smith JR (2007) Historical evolution of stereotactic amygdalotomy for the management of severe aggression. J Neurosurg 106(4):710–713. doi:10.3171/jns.2007.106.4.710

    PubMed  Google Scholar 

  8. Velasco F, Velasco M, Jimenez F, Velasco AL, Salin-Pascual R (2005) Neurobiological background for performing surgical intervention in the inferior thalamic peduncle for treatment of major depression disorders. Neurosurgery 57(3):439–448; discussion-48. doi:00006123-200509000-00001 [pii]

    Google Scholar 

  9. Medvedev SV, Anichkov AD, Poliakov II (2003) Physiological mechanisms of the effectiveness of bilateral stereotactic cingulotomy in treatment of strong psychological dependence in drug addiction. Fiziol Cheloveka 29(4):117–123

    CAS  PubMed  Google Scholar 

  10. Binder DK, Iskandar BJ (2000) Modern neurosurgery for psychiatric disorders. Neurosurgery 47(1):9–21 (discussion 3)

    Google Scholar 

  11. Lozano A, Gildenberg P, Tasker R, Lozano AM, Gildenberg PL, Tasker RR (2009) Textbook of stereotactic and functional neurosurgery, 2nd edn. Springer, New York, p 2861

    Google Scholar 

  12. Lu L, Wang X, Kosten TR (2009) Stereotactic neurosurgical treatment of drug addiction. Am J Drug Alcohol Abuse 35(6):391–393. doi:10.3109/00952990903312478

    PubMed  Google Scholar 

  13. Stelten BM, Noblesse LH, Ackermans L, Temel Y, Visser-Vandewalle V (2008) The neurosurgical treatment of addiction. Neurosurg Focus 25(1):E5. doi:10.3171/FOC/2008/25/7/E5

    PubMed  Google Scholar 

  14. Gao G, Wang X, He S, Li W, Wang Q, Liang Q et al (2003) Clinical study for alleviating opiate drug psychological dependence by a method of ablating the nucleus accumbens with stereotactic surgery. Stereotact Funct Neurosurg 81(1–4):96–104. doi:10.1159/000075111 75111 [pii]

    PubMed  Google Scholar 

  15. Fountas KN, Smith JR, Lee GP (2007) Bilateral stereotactic amygdalotomy for self-mutilation disorder. Case report and review of the literature. Stereotact Funct Neurosurg 85(2–3):121–128. doi:10.1159/000098527 000098527 [pii]

    Google Scholar 

  16. Kim MC, Lee TK (2008) Stereotactic lesioning for mental illness. Acta Neurochir Suppl 101:39–43

    PubMed  Google Scholar 

  17. Meyer A (1954) Prefrontal leucotomy and related operations. Oliver & Boyd, London

    Google Scholar 

  18. Talairach J, Hecaen H, David M (1949) Lobotomies prefrontal limitee par electrocoagulation des fibres thalamo-frontales à leur emergence du bras anterieur de la capsule interne. In: Proceedings IV congres neurologique international, Paris

    Google Scholar 

  19. Bingley T, Leksell L, Meyerson BA et al (1973) Stereotactic anterior capsulotomy in anxiety and obsessive-compulsive states. Surgical approaches in psychiatry. Medical and Technical Publishing, Lancaster

    Google Scholar 

  20. Simpson BJ, Thomas RP (ed) (2003) Stereotactic anterior capsulotomy for intractable depression and obsessive compulsive disorder [Abstract]. In: Proceedings of the 143rd meeting of the society of British neurological surgeons. Br J Neurosurg, Cardiff

    Google Scholar 

  21. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381. doi:10.1146/annurev.ne.09.030186.002041

    CAS  PubMed  Google Scholar 

  22. Cavada C, Company T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suarez F (2000) The anatomical connections of the macaque monkey orbitofrontal cortex. Rev Cereb Cortex 10(3):220–242

    CAS  Google Scholar 

  23. Axer H, Lippitz BE, von Keyserlingk DG (1999) Morphological asymmetry in anterior limb of human internal capsule revealed by confocal laser and polarized light microscopy. Psychiatry Res 91(3):141–154

    CAS  PubMed  Google Scholar 

  24. Spiegelmann R, Faibel M, Zohar Y (1994) CT target selection in stereotactic anterior capsulotomy: anatomical considerations. Stereotact Funct Neurosurg 63(1–4):160–167

    CAS  PubMed  Google Scholar 

  25. Christmas D, Eljamel MS, Butler S, Hazari H, MacVicar R, Steele JD et al (2011) Long term outcome of thermal anterior capsulotomy for chronic, treatment refractory depression. J Neurol Neurosurg Psychiatry 82(6):594–600. doi:10.1136/jnnp.2010.217901 jnnp.2010.217901 [pii]

    PubMed  Google Scholar 

  26. Mindus P, Nyman H, Mogard J (1990) Frontal lobe and basal ganglia metabolism studies in patients with incapacitating obsessive-compulsive disorder undergoing capsulotomy. Nord J Psychiatry 44:309–312

    Google Scholar 

  27. Hurwitz TA, Mandat T, Forster B, Honey C (2006) Tract identification by novel MRI signal changes following stereotactic anterior capsulotomy. Stereotact Funct Neurosurg 84(5–6):228–235. doi:10.1159/000096496 96496 [pii]

    CAS  PubMed  Google Scholar 

  28. Mindus P, Jenike MA (1992) Neurosurgical treatment of malignant obsessive compulsive disorder. Psychiatr Clin N Am 15(4):921–938

    Google Scholar 

  29. Mindus P, Meyerson BA (1982) Anterior capsulotomy for intractable anxiety disorders. In: Schmidek H, Sweeney JA (eds) Operative neurosurgical techniques. WB Saunders, Philadelphia

    Google Scholar 

  30. Lippitz BE, Mindus P, Meyerson BA, Kihlstrom L, Lindquist C (1999) Lesion topography and outcome after thermocapsulotomy or gamma knife capsulotomy for obsessive-compulsive disorder: relevance of the right hemisphere. Neurosurgery 44(3):452–458; discussion 8–60

    Google Scholar 

  31. Lippitz B, Mindus P, Meyerson BA, Kihlstrom L, Lindquist C (1997) Obsessive compulsive disorder and the right hemisphere: topographic analysis of lesions after anterior capsulotomy performed with thermocoagulation. Acta Neurochir Suppl 68:61–63

    CAS  PubMed  Google Scholar 

  32. Cosgrove GR, Rauch SL (1995) Psychosurgery. Neurosurg Clin N Am 6(1):167–176

    CAS  PubMed  Google Scholar 

  33. Herner T (1961) Treatment of mental disorders with frontal stereotaxic thermo-lesions. Acta Psychiatr Scand 36(158):1–140

    Google Scholar 

  34. Liu K, Zhang H, Liu C, Guan Y, Lang L, Cheng Y et al (2008) Stereotactic treatment of refractory obsessive compulsive disorder by bilateral capsulotomy with 3 years follow-up. J Clin Neurosci 15(6):622–629. doi:10.1016/j.jocn.2007.07.086 S0967-5868(07)00497-3 [pii]

    PubMed  Google Scholar 

  35. Oliver B, Gascon J, Aparicio A, Ayats E, Rodriguez R, Maestro De Leon JL et al (2003) Bilateral anterior capsulotomy for refractory obsessive-compulsive disorders. Stereotact Funct Neurosurg 81(1–4):90–95. doi:10.1159/000075110 75110 [pii]

  36. Mindus P, Nyman H (1991) Normalization of personality characteristics in patients with incapacitating anxiety disorders after capsulotomy. Acta Psychiatr Scand 83(4):283–291

    CAS  PubMed  Google Scholar 

  37. Ruck C, Andreewitch S, Flyckt K, Edman G, Nyman H, Meyerson BA et al (2003) Capsulotomy for refractory anxiety disorders: long-term follow-up of 26 patients. Am J Psychiatry 160(3):513–521

    PubMed  Google Scholar 

  38. Lozano A, Gildenberg P, Tasker R, Lozano AM, Gildenberg PL, Tasker RR (2009) Textbook of stereotactic and functional neurosurgery, 2nd edn. Springer, New York

    Google Scholar 

  39. Mindus P, Edman G, Andreewitch S (1999) A prospective, long-term study of personality traits in patients with intractable obsessional illness treated by capsulotomy. Acta Psychiatr Scand 99(1):40–50

    CAS  PubMed  Google Scholar 

  40. Mindus P, Nyman H, Rosenquist A, Rydin E, Meyerson BA (1988) Aspects of personality in patients with anxiety disorders undergoing capsulotomy. Acta Neurochir Suppl (Wien) 44:138–144

    CAS  Google Scholar 

  41. Ruck C, Edman G, Asberg M, Svanborg P (2006) Long-term changes in self-reported personality following capsulotomy in anxiety patients. Nord J Psychiatry 60(6):486–491. doi:10.1080/08039480601022116 Q90002X766K344J8 [pii]

    PubMed  Google Scholar 

  42. Ruck C, Karlsson A, Steele JD, Edman G, Meyerson BA, Ericson K et al (2008) Capsulotomy for obsessive-compulsive disorder: long-term follow-up of 25 patients. Arch Gen Psychiatry 65(8):914–921. doi:10.1001/archpsyc.65.8.914 65/8/914 [pii]

    PubMed  Google Scholar 

  43. Ridout N, O’Carroll RE, Dritschel B, Christmas D, Eljamel M, Matthews K (2007) Emotion recognition from dynamic emotional displays following anterior cingulotomy and anterior capsulotomy for chronic depression. Neuropsychologia 45(8):1735–1743. doi:10.1016/j.neuropsychologia.2006.12.022 S0028-3932(07)00011-5 [pii]

    PubMed  Google Scholar 

  44. Cosgrove GR, Rauch SL (2003) Stereotactic cingulotomy. Neurosurg Clin N Am 14(2):225–235

    PubMed  Google Scholar 

  45. Winn HR, Youmans JR (2011) Youmans’ neurological surgery, 6th edn. Saunders, Philadelphia, London

    Google Scholar 

  46. Schmidek HH, Roberts DW (2006) Schmidek and Sweet operative neurosurgical techniques: indications, methods, and results, 5th edn. Saunders Elsevier, Philadelphia

    Google Scholar 

  47. Vertes RP, Albo Z, Viana Di Prisco G (2001) Theta-rhythmically firing neurons in the anterior thalamus: implications for mnemonic functions of Papez’s circuit. Neuroscience 104(3):619–625. doi:S0306-4522(01)00131-2 [pii]

  48. Ballantine HT Jr, Cassidy WL, Flanagan NB, Marino R Jr (1967) Stereotaxic anterior cingulotomy for neuropsychiatric illness and intractable pain. J Neurosurg 26(5):488–495. doi:10.3171/jns.1967.26.5.0488

    PubMed  Google Scholar 

  49. Pribram KH, Fulton JF (1954) An experimental critique of the effects of anterior cingulate ablations in monkey. Brain 77(1):34–44

    CAS  PubMed  Google Scholar 

  50. Fulton JF (1951) Lobotomy in man. Wis Med J 50(5):387; passim

    Google Scholar 

  51. Ward AA Jr (1948) The anterior cingulate gyrus and personality. Res Publ Assoc Res Nerv Ment Dis 27:438–445

    Google Scholar 

  52. Pool JL, Ransohoff J (1949) Autonomic effects on stimulating rostral portion of cingulate gyri in man. J Neurophysiol 12(6):385–392

    CAS  PubMed  Google Scholar 

  53. Whitty CW, Duffield JE, Tov PM, Cairns H (1952) Anterior cingulectomy in the treatment of mental disease. Lancet 1(6706):475–481

    CAS  PubMed  Google Scholar 

  54. Scoville W (1951) Research project of undercut- ting of the medial-cingulate gyrus Brodmann’s area 24 and 32. Trans Am Neurol Assoc 56:226–227

    CAS  PubMed  Google Scholar 

  55. Le Beau J (1954) Anterior cingulectomy in man. J Neurosurg 11(3):268–276. doi:10.3171/jns.1954.11.3.0268

    Google Scholar 

  56. Tow PM, Armstrong RW, Oxon MA (1954) Anterior cingulectomy in schizophrenia and other psychotic disorders; clinical results. J Ment Sci 100(418):46–61

    CAS  PubMed  Google Scholar 

  57. Whitty CW, Lewin W (1957) Vivid daydreaming: an unusual form of confusion following anterior cingulectomy. Brain 80(1):72–76

    CAS  PubMed  Google Scholar 

  58. Ballantine HT, Cassidy WL, Brodeur J, Giriunas I (eds) (1970) Frontal cingulotomy for mood disturbance. International conference on psychosurgery, Copenhagen, Denmark, Springfield, Ill

    Google Scholar 

  59. Foltz EL, White LE Jr (1962) Pain “relief” by frontal cingulotomy. J Neurosurg 19:89–100. doi:10.3171/jns.1962.19.2.0089

    CAS  PubMed  Google Scholar 

  60. Brotis AG, Kapsalaki EZ, Paterakis K, Smith JR, Fountas KN (2009) Historic evolution of open cingulectomy and stereotactic cingulotomy in the management of medically intractable psychiatric disorders, pain and drug addiction. Stereotact Funct Neurosurg 87(5):271–291. doi:10.1159/000226669 000226669 [pii]

    PubMed  Google Scholar 

  61. Balasubramaniam V, Kanaka TS, Ramanujam PB (1973) Stereotaxic cingulumotomy for drug addiction. Neurol India 21(2):63–66

    CAS  PubMed  Google Scholar 

  62. Kanaka TS, Balasubramaniam V (1978) Stereotactic cingulumotomy for drug addiction. Appl Neurophysiol 41(1–4):86–92

    CAS  PubMed  Google Scholar 

  63. Soares JC, Mann JJ (1997) The functional neuroanatomy of mood disorders. J Psychiatr Res 31(4):393–432 S0022-3956(97)00016-2[pii]

    CAS  PubMed  Google Scholar 

  64. Frewen PA, Dozois DJ, Lanius RA (2008) Neuroimaging studies of psychological interventions for mood and anxiety disorders: empirical and methodological review. Clin Psychol Rev 28(2):228–246. doi:10.1016/j.cpr.2007.05.002 S0272-7358(07)00102-X [pii]

    PubMed  Google Scholar 

  65. Drevets WC (2001) Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 11(2):240–249 S0959-4388(00)00203-8[pii]

    CAS  PubMed  Google Scholar 

  66. Soares JC, Mann JJ (1997) The anatomy of mood disorders–review of structural neuroimaging studies. Biol Psychiatry 41(1):86–106 S0006322396000066[pii]

    CAS  PubMed  Google Scholar 

  67. Drevets WC, Price JL, Simpson JR Jr, Todd RD, Reich T, Vannier M et al (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386(6627):824–827. doi:10.1038/386824a0

    CAS  PubMed  Google Scholar 

  68. Mayberg HS, Liotti M, Brannan SK, McGinnis S, Mahurin RK, Jerabek PA et al (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156(5):675–682

    CAS  PubMed  Google Scholar 

  69. Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA (2001) Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry 50(9):651–658 S000632230101263X[pii]

    CAS  PubMed  Google Scholar 

  70. Shields DC, Asaad W, Eskandar EN, Jain FA, Cosgrove GR, Flaherty AW et al (2008) Prospective assessment of stereotactic ablative surgery for intractable major depression. Biol Psychiatry 64(6):449–454. doi:10.1016/j.biopsych.2008.04.009 S0006-3223(08)00431-9 [pii]

    PubMed  Google Scholar 

  71. Scoville WB, Wilk EK, Pepe AJ (1951) Selective cortical undercutting; results in new method of fractional lobotomy. Am J Psychiatry 107(10):730–738

    CAS  PubMed  Google Scholar 

  72. Cosgrove GR (2009) Cingulotomy for depression and OCD. In: Lozano A (ed) Textbook of stereotactic and functional neurosurgery, vol 1, 2nd edn. Springer, New York, pp 2887–2896

    Google Scholar 

  73. Ballantine HT Jr, Bouckoms AJ, Thomas EK, Giriunas IE (1987) Treatment of psychiatric illness by stereotactic cingulotomy. Biol Psychiatry 22(7):807–819 0006-3223(87)90080-1 [pii]

    PubMed  Google Scholar 

  74. Spangler WJ, Cosgrove GR, Ballantine HT Jr, Cassem EH, Rauch SL, Nierenberg A et al (1996) Magnetic resonance image-guided stereotactic cingulotomy for intractable psychiatric disease. Neurosurgery 38(6):1071–1076; discussion 6–8

    Google Scholar 

  75. Jenike MA, Baer L, Ballantine T, Martuza RL, Tynes S, Giriunas I et al (1991) Cingulotomy for refractory obsessive-compulsive disorder. A long-term follow-up of 33 patients. Arch Gen Psychiatry 48(6):548–555

    CAS  PubMed  Google Scholar 

  76. Dougherty DD, Baer L, Cosgrove GR, Cassem EH, Price BH, Nierenberg AA et al (2002) Prospective long-term follow-up of 44 patients who received cingulotomy for treatment-refractory obsessive-compulsive disorder. Am J Psychiatry 159(2):269–275

    PubMed  Google Scholar 

  77. Kim CH, Chang JW, Koo MS, Kim JW, Suh HS, Park IH et al (2003) Anterior cingulotomy for refractory obsessive-compulsive disorder. Acta Psychiatr Scand 107(4):283–290 087 [pii]

    PubMed  Google Scholar 

  78. Jung HH, Kim CH, Chang JH, Park YG, Chung SS, Chang JW (2006) Bilateral anterior cingulotomy for refractory obsessive-compulsive disorder: long-term follow-up results. Stereotact Funct Neurosurg 84(4):184–189. doi:10.1159/000095031 95031 [pii]

    PubMed  Google Scholar 

  79. Richter EO, Davis KD, Hamani C, Hutchison WD, Dostrovsky JO, Lozano AM (2008) Cingulotomy for psychiatric disease: microelectrode guidance, a callosal reference system for documenting lesion location, and clinical results. Neurosurgery 62(6 Suppl 3):957–965. doi:10.1227/01.neu.0000333763.20575.18 00006123-200806001-00005 [pii]

    PubMed  Google Scholar 

  80. Richter EO, Davis KD, Hamani C, Hutchison WD, Dostrovsky JO, Lozano AM (2004) Cingulotomy for psychiatric disease: microelectrode guidance, a callosal reference system for documenting lesion location, and clinical results. Neurosurgery 54(3):622–28; discussion 8–30

    Google Scholar 

  81. Turner E (ed) (1970) Operations for aggression: bilateral temporal lobotomy and posterior cingulectomy. International conference on psychosurgery, Copenhagen, Denmark, Springfield, Ill

    Google Scholar 

  82. Jimenez-Ponce F, Soto-Abraham JE, Ramirez-Tapia Y, Velasco-Campos F, Carrillo-Ruiz JD, Gomez-Zenteno P (2011) Evaluation of bilateral cingulotomy and anterior capsulotomy for the treatment of aggressive behavior. Cir Cir 79(2):107–113

    PubMed  Google Scholar 

  83. Jimenez F, Soto JE, Velasco F, Andrade P, Bustamante JJ, Gomez P et al (2012) Bilateral cingulotomy and anterior capsulotomy applied to patients with aggressiveness. Stereotact Funct Neurosurg 90(3):151–160. doi:10.1159/000336746 000336746 [pii]

    PubMed  Google Scholar 

  84. Baer L, Rauch SL, Ballantine HT Jr, Martuza R, Cosgrove R, Cassem E et al (1995) Cingulotomy for intractable obsessive-compulsive disorder. Prospective long-term follow-up of 18 patients. Arch Gen Psychiatry 52(5):384–392

    CAS  PubMed  Google Scholar 

  85. Pokorny AD (1983) Prediction of suicide in psychiatric patients. Report of a prospective study. Arch Gen Psychiatry 40(3):249–257

    CAS  PubMed  Google Scholar 

  86. Lozano A, Gildenberg P, Tasker R, Lozano AM, Gildenberg PL, Tasker RR (2009) Cingulotomy for depression and OCD, textbook of stereotactic and functional neurosurgery, 2nd edn. Springer, New York, pp 2887–2896

    Google Scholar 

  87. Andrade P, Noblesse LH, Temel Y, Ackermans L, Lim LW, Steinbusch HW et al (2010) Neurostimulatory and ablative treatment options in major depressive disorder: a systematic review. Acta Neurochir (Wien) 152(4):565–577. doi:10.1007/s00701-009-0589-6

    Google Scholar 

  88. Knight GC, Tredgold RF (1955) Orbital leucotomy: a review of 52 cases. Lancet 268(6872):981–986

    CAS  PubMed  Google Scholar 

  89. Bridges PK, Bartlett JR, Hale AS, Poynton AM, Malizia AL, Hodgkiss AD (1994) Psychosurgery: stereotactic subcaudate tractomy. An indispensable treatment. Br J Psychiatry 165(5):599–611; discussion 2–3

    Google Scholar 

  90. Hodgkiss AD, Malizia AL, Bartlett JR, Bridges PK (1995) Outcome after the psychosurgical operation of stereotactic subcaudate tractotomy, 1979–1991. J Neuropsychiatry Clin Neurosci 7(2):230–234

    CAS  PubMed  Google Scholar 

  91. Knight G (1964) The orbital cortex as an objective in the surgical treatment of mental illness. The results of 450 cases of open operation and the development of the stereotactic approach. Br J Surg 51:114–124

    CAS  PubMed  Google Scholar 

  92. Poynton AM, Kartsounis LD, Bridges PK (1995) A prospective clinical study of stereotactic subcaudate tractotomy. Psychol Med 25(4):763–770

    CAS  PubMed  Google Scholar 

  93. Goktepe EO, Young LB, Bridges PK (1975) A further review of the results of stereotactic subcaudate tractotomy. Br J Psychiatry 126:270–280

    CAS  PubMed  Google Scholar 

  94. Kartsounis LD, Poynton A, Bridges PK, Bartlett JR (1991) Neuropsychological correlates of stereotactic subcaudate tractotomy. A prospective study. Brain 114(Pt 6):2657–2673

    PubMed  Google Scholar 

  95. Kelly D, Richardson A, Mitchell-Heggs N, Greenup J, Chen C, Hafner RJ (1973) Stereotactic limbic leucotomy: a preliminary report on forty patients. Br J Psychiatry 123(573):141–148

    CAS  PubMed  Google Scholar 

  96. Mitchell-Heggs N, Kelly D, Richardson A (1976) Stereotactic limbic leucotomy–a follow-up at 16 months. Br J Psychiatry 128:226–240

    CAS  PubMed  Google Scholar 

  97. Montoya A, Weiss AP, Price BH, Cassem EH, Dougherty DD, Nierenberg AA et al (2002) Magnetic resonance imaging-guided stereotactic limbic leukotomy for treatment of intractable psychiatric disease. Neurosurgery 50(5):1043–1049 (discussion 9–52)

    Google Scholar 

  98. Fodstad H, Strandman E, Karlsson B, West KA (1982) Treatment of chronic obsessive compulsive states with stereotactic anterior capsulotomy or cingulotomy. Acta Neurochir (Wien) 62(1–2):1–23

    CAS  Google Scholar 

  99. Macklin R (1999) The ethical problems with sham surgery in clinical research. N Engl J Med 341(13):992–996. doi:10.1056/NEJM199909233411312

    CAS  PubMed  Google Scholar 

  100. Mehta S, Myers TG, Lonner JH, Huffman GR, Sennett BJ (2007) The ethics of sham surgery in clinical orthopaedic research. J Bone Joint Surg Am 89(7):1650–1653. doi:10.2106/JBJS.F.00563

    PubMed  Google Scholar 

  101. Dekkers W, Boer G (2001) Sham neurosurgery in patients with Parkinson’s disease: is it morally acceptable? J Med Ethics 27(3):151–156

    CAS  PubMed  Google Scholar 

  102. Means KR Jr (2008) The ethics of sham surgery in clinical orthopaedic research. J Bone Joint Surg Am 90(2):444; author reply 5

    Google Scholar 

  103. Juckel G, Uhl I, Padberg F, Brune M, Winter C (2009) Psychosurgery and deep brain stimulation as ultima ratio treatment for refractory depression. Eur Arch Psychiatry Clin Neurosci 259(1):1–7. doi:10.1007/s00406-008-0826-7

    PubMed  Google Scholar 

  104. Christmas D, Morrison C, Eljamel MS, Matthews K (2004) Neurosurgery for mental disorder. Adv Psy chiatr Treat 10:189–199

    Google Scholar 

  105. Leksell L (1951) The stereotaxic method and radiosurgery of the brain. Acta Chirurgica Scandinavica 102:316–319

    CAS  PubMed  Google Scholar 

  106. Leksell LH, Liden T (1955) Stereotaxic radiosurgery of the brain: report of a case. Kungl Fysiogr Sallsk Lund Forhandl 25:1–10

    Google Scholar 

  107. Leksell L, Backlund EO (1979) Stereotactic gammacapsulotomy. In: Hitchcock ER, Ballantine HT, Meyerson BA (eds) Modern concepts in psychiatric surgery. Elsevier, Amsterdam, pp 213–216

    Google Scholar 

  108. Mindus P, Bergstrom K, Levander SE, Noren G, Hindmarsh T, Thuomas KA (1987) Magnetic resonance images related to clinical outcome after psychosurgical intervention in severe anxiety disorder. J Neurol Neurosurg Psychiatry 50(10):1288–1293

    CAS  PubMed  Google Scholar 

  109. Kihlstrom L, Guo WY, Lindquist C, Mindus P (1995) Radiobiology of radiosurgery for refractory anxiety disorders. Neurosurgery 36(2):294–302

    CAS  PubMed  Google Scholar 

  110. Kihlstrom L, Hindmarsh T, Lax I, Lippitz B, Mindus P, Lindquist C (1997) Radiosurgical lesions in the normal human brain 17 years after gamma knife capsulotomy. Neurosurgery 41(2):396–401 (discussion 2)

    Google Scholar 

  111. Leksell L, Leksell D, Schwebel J (1985) Stereotaxis and nuclear magnetic resonance. J Neurol Neurosurg Psychiatry 48(1):14–18

    CAS  PubMed  Google Scholar 

  112. Kondziolka D, Flickinger JC, Hudak R (2011) Results following gamma knife radiosurgical anterior capsulotomies for obsessive compulsive disorder. Neurosurgery 68(1):28–32; discussion 23–33. doi:10.1227/NEU.0b013e3181fc5c8b 00006123-201101000-00005 [pii]

    Google Scholar 

  113. Taub A, Lopes AC, Fuentes D, D’Alcante CC, de Mathis ME, Canteras MM et al (2009) Neuropsychological outcome of ventral capsular/ventral striatal gamma capsulotomy for refractory obsessive-compulsive disorder: a pilot study. J Neuropsychiatry Clin Neurosci 21(4):393–397. doi:10.1176/appi.neuropsych.21.4.393 21/4/393 [pii]

    PubMed  Google Scholar 

  114. Lopes AC, Greenberg BD, Noren G, Canteras MM, Busatto GF, de Mathis ME et al (2009) Treatment of resistant obsessive-compulsive disorder with ventral capsular/ventral striatal gamma capsulotomy: a pilot prospective study. J Neuropsychiatry Clin Neurosci 21(4):381–392. doi:10.1176/appi.neuropsych.21.4.381 21/4/381 [pii]

    CAS  PubMed  Google Scholar 

  115. Gouvea F, Lopes A, Greenberg B, Canteras M, Taub A, Mathis M et al (2010) Response to sham and active gamma ventral capsulotomy in otherwise intractable obsessive-compulsive disorder. Stereotact Funct Neurosurg 88(3):177–182. doi:10.1159/000313870 000313870 [pii]

    CAS  PubMed  Google Scholar 

  116. Martin E, Jeanmonod D, Morel A, Zadicario E, Werner B (2009) High-intensity focused ultrasound for noninvasive functional neurosurgery. Ann Neurol 66(6):858–861. doi:10.1002/ana.21801

    PubMed  Google Scholar 

  117. Rode J (1655) Compositiones medicae. Typis Pauli Frambotti

    Google Scholar 

  118. Penfield W (1958) Some mechanisms of consciousness discovered during electrical stimulation of the brain. Proc Natl Acad Sci USA 44(2):51–66

    CAS  PubMed  Google Scholar 

  119. Penfield W, Welch K (1949) Instability of response to stimulation of the sensorimotor cortex of man. J Physiol 109(3–4):358–365, illust

    Google Scholar 

  120. Pool JL (1954) Psychosurgery in older people. J Am Geriatr Soc 2:456–465

    CAS  PubMed  Google Scholar 

  121. Hariz MI, Blomstedt P, Zrinzo L (2010) Deep brain stimulation between 1947 and 1987: the untold story. Neurosurg Focus 29(2):E1

    PubMed  Google Scholar 

  122. Delgado JM, Hamlin H, Chapman WP (1952) Technique of intracranial electrode implacement for recording and stimulation and its possible therapeutic value in psychotic patients. Confin Neurol 12(5–6):315–319

    CAS  PubMed  Google Scholar 

  123. Delgado JMR, Graulich M (1972) Le conditionnement du cerveau et la liberté de l’esprit. Ch. Dessart

    Google Scholar 

  124. Baumeister AA (2000) The Tulane electrical brain stimulation program a historical case study in medical ethics. J Hist Neurosci 9(3):262–278. doi:10.1076/jhin.9.3.262.1787

    CAS  PubMed  Google Scholar 

  125. Heath RG (1963) Electrical self-stimulation of the brain in man. Am J Psychiatry 120:571–577

    CAS  PubMed  Google Scholar 

  126. Heath RG (1977) Modulation of emotion with a brain pacemaker. Treatment for intractable psychiatric illness. J Nerv Ment Dis 165(5):300–317

    CAS  PubMed  Google Scholar 

  127. Heath RG (1972) Pleasure and brain activity in man. Deep and surface electroencephalograms during orgasm. J Nerv Ment Dis 154(1):3–18

    CAS  PubMed  Google Scholar 

  128. Sem-Jacobsen CW (1965) Depth electrographic stimulation and treatment of patients with Parkinson’s disease including neurosurgical technique. Acta Neurol Scand Suppl 13(1):365–377

    PubMed  Google Scholar 

  129. Sem-Jacobsen CW (1966) Depth-electrographic observations related to Parkinson’s disease. Recording and electrical stimulation in the area around the third ventricle. J Neurosurg 24(1):Suppl:388–402

    Google Scholar 

  130. Sem-Jacobsen CW (1968) Depth electrographic stimulation of the human brain and behavior: from fourteen years of studies and treatment of Parkinson’s disease and mental disorders with implanted electrodes, 1 Jan 1965 edition, Springfield, Ill

    Google Scholar 

  131. Sheer D (1961) Electrical stimulation of the brain. An Interdisciplinary survey of neurobehavioral integrative system, Austin, Texas

    Google Scholar 

  132. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J (1987) Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl Neurophysiol 50(1–6):344–346

    CAS  PubMed  Google Scholar 

  133. Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M et al (1991) Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337(8738):403–406 0140-6736(91)91175-T[pii]

    CAS  PubMed  Google Scholar 

  134. Benabid AL, Pollak P, Seigneuret E, Hoffmann D, Gay E, Perret J (1993) Chronic VIM thalamic stimulation in Parkinson’s disease, essential tremor and extra-pyramidal dyskinesias. Acta Neurochir Suppl (Wien) 58:39–44

    CAS  Google Scholar 

  135. Coubes P, Roubertie A, Vayssiere N, Hemm S, Echenne B (2000) Treatment of DYT1-generalised dystonia by stimulation of the internal globus pallidus. Lancet 355(9222):2220–2221. doi:10.1016/S0140-6736(00)02410-7 S0140-6736(00)02410-7 [pii]

    CAS  PubMed  Google Scholar 

  136. Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C et al (2003) Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349(20):1925–1934. doi:10.1056/NEJMoa035275 49/20/1925 [pii]

    CAS  PubMed  Google Scholar 

  137. Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K et al (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355(9):896–908. doi:10.1056/NEJMoa060281 355/9/896 [pii]

    CAS  PubMed  Google Scholar 

  138. Funkiewiez A, Ardouin C, Caputo E, Krack P, Fraix V, Klinger H et al (2004) Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson’s disease. J Neurol Neurosurg Psychiatry 75(6):834–839

    CAS  PubMed  Google Scholar 

  139. Herzog J, Reiff J, Krack P, Witt K, Schrader B, Muller D et al (2003) Manic episode with psychotic symptoms induced by subthalamic nucleus stimulation in a patient with Parkinson’s disease. Mov Disord 18(11):1382–1384. doi:10.1002/mds.10530

    PubMed  Google Scholar 

  140. Romito LM, Raja M, Daniele A, Contarino MF, Bentivoglio AR, Barbier A et al (2002) Transient mania with hypersexuality after surgery for high frequency stimulation of the subthalamic nucleus in Parkinson’s disease. Mov Disord 17(6):1371–1374. doi:10.1002/mds.10265

    PubMed  Google Scholar 

  141. Bejjani BP, Damier P, Arnulf I, Thivard L, Bonnet AM, Dormont D et al (1999) Transient acute depression induced by high-frequency deep-brain stimulation. N Engl J Med 340(19):1476–1480. doi:10.1056/NEJM199905133401905

    CAS  PubMed  Google Scholar 

  142. Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D et al (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 339(16):1105–1111. doi:10.1056/NEJM199810153391603

    CAS  PubMed  Google Scholar 

  143. Houeto JL, Mesnage V, Mallet L, Pillon B, Gargiulo M, du Moncel ST et al (2002) Behavioural disorders, Parkinson’s disease and subthalamic stimulation. J Neurol Neurosurg Psychiatry 72(6):701–707

    CAS  PubMed  Google Scholar 

  144. Burkhard PR, Vingerhoets FJ, Berney A, Bogousslavsky J, Villemure JG, Ghika J (2004) Suicide after successful deep brain stimulation for movement disorders. Neurology 63(11):2170–2172 63/11/2170[pii]

    CAS  PubMed  Google Scholar 

  145. Bejjani BP, Houeto JL, Hariz M, Yelnik J, Mesnage V, Bonnet AM et al (2002) Aggressive behavior induced by intraoperative stimulation in the triangle of Sano. Neurology 59(9):1425–1427

    CAS  PubMed  Google Scholar 

  146. Jaafari N, Gire P, Houeto JL (2009) Deep brain stimulation, Parkinson’s disease and neuropsychiatric complications. Presse Med 38(9):1335–1342. doi:10.1016/j.lpm.2008.11.019 S0755-4982(09)00048-7 [pii]

    PubMed  Google Scholar 

  147. Houeto JL, Mallet L, Mesnage V, Tezenas du Montcel S, Behar C, Gargiulo M et al (2006) Subthalamic stimulation in Parkinson disease: behavior and social adaptation. Arch Neurol 63(8):1090–1095. doi:10.1001/archneur.63.8.1090 63/8/1090 [pii]

    Google Scholar 

  148. Aarsland D, Larsen JP, Lim NG, Janvin C, Karlsen K, Tandberg E et al (1999) Range of neuropsychiatric disturbances in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 67(4):492–496

    CAS  PubMed  Google Scholar 

  149. Mallet L, Mesnage V, Houeto JL, Pelissolo A, Yelnik J, Behar C et al (2002) Compulsions, Parkinson’s disease, and stimulation. Lancet 360(9342):1302–1304. doi:10.1016/S0140-6736(02)11339-0 S0140-6736(02)11339-0 [pii]

    PubMed  Google Scholar 

  150. Fontaine D, Mattei V, Borg M, von Langsdorff D, Magnie MN, Chanalet S et al (2004) Effect of subthalamic nucleus stimulation on obsessive-compulsive disorder in a patient with Parkinson disease. Case report. J Neurosurg 100(6):1084–1086. doi:10.3171/jns.2004.100.6.1084

    PubMed  Google Scholar 

  151. Nuttin B, Cosyns P, Demeulemeester H, Gybels J, Meyerson B (1999) Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet 354(9189):1526. doi:10.1016/S0140-6736(99)02376-4 S0140-6736(99)02376-4 [pii]

    CAS  PubMed  Google Scholar 

  152. Group O-DC (2002) Deep brain stimulation for psychiatric disorders. Neurosurgery 51(2):519

    Google Scholar 

  153. santé CCNdEplsdlvedl (2002) Avis sur la neurochirurgie fonctionnelle d’affections psychiatriques sévères. La Documentation française 153

    Google Scholar 

  154. France Comité consultatif national d’éthique pour les sciences de la vie et de la santé (2005) Avis sur la neurochirurgie fonctionnelle d’affections psychiatriques sévères. Ethique et recherche biomédicale Rapport 2002. la Documentation française, Paris

    Google Scholar 

  155. Carron R, Chabardes S, Hammond C (2012) Mechanisms of action of high-frequency deep brain stimulation. A review of the literature and current concepts. Neurochirurgie. doi:10.1016/j.neuchi.2012.02.006 S0028-3770(12)00013-6 [pii]

  156. Garcia L, D’Alessandro G, Bioulac B, Hammond C (2005) High-frequency stimulation in Parkinson’s disease: more or less? Trends Neurosci 28(4):209–216. doi:10.1016/j.tins.2005.02.005

    CAS  PubMed  Google Scholar 

  157. Hemm S, Mennessier G, Vayssiere N, Cif L, El Fertit H, Coubes P (2005) Deep brain stimulation in movement disorders: stereotactic coregistration of two-dimensional electrical field modeling and magnetic resonance imaging. J Neurosurg 103(6):949–955. doi:10.3171/jns.2005.103.6.0949

    PubMed  Google Scholar 

  158. Benazzouz A, Hallett M (2000) Mechanism of action of deep brain stimulation. Neurology 55(12 Suppl 6):S13–S16

    CAS  PubMed  Google Scholar 

  159. Dostrovsky JO, Lozano AM (2002) Mechanisms of deep brain stimulation. Mov Disord 17(Suppl 3):S63–S68

    PubMed  Google Scholar 

  160. Benabid AL, Benazzous A, Pollak P (2002) Mechanisms of deep brain stimulation. Mov Disord 17(Suppl 3):S73–S74

    PubMed  Google Scholar 

  161. Nuttin BJ, Gabriels LA, Cosyns PR, Meyerson BA, Andreewitch S, Sunaert SG et al (2003) Long-term electrical capsular stimulation in patients with obsessive-compulsive disorder. Neurosurgery 52(6):1263–1272 (discussion 72–74)

    Google Scholar 

  162. Coenen VA, Honey CR, Hurwitz T, Rahman AA, McMaster J, Burgel U et al (2009) Medial forebrain bundle stimulation as a pathophysiological mechanism for hypomania in subthalamic nucleus deep brain stimulation for Parkinson’s disease. Neurosurgery 64(6):1106–1114 (discussion 14–15). doi:10.1227/01.NEU.0000345631.54446.06

    Google Scholar 

  163. Hammond C, Ammari R, Bioulac B, Garcia L (2008) Latest view on the mechanism of action of deep brain stimulation. Mov Disord 23(15):2111–2121. doi:10.1002/mds.22120

    PubMed  Google Scholar 

  164. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324(5925):354–359. doi:10.1126/science.1167093 1167093 [pii]

    CAS  PubMed  Google Scholar 

  165. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N et al (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446(7136):633–639. doi:10.1038/nature05744 nature05744 [pii]

    CAS  PubMed  Google Scholar 

  166. Toda H, Hamani C, Fawcett AP, Hutchison WD, Lozano AM (2008) The regulation of adult rodent hippocampal neurogenesis by deep brain stimulation. J Neurosurg 108(1):132–138. doi:10.3171/JNS/2008/108/01/0132

    PubMed  Google Scholar 

  167. Hamani C, Stone SS, Garten A, Lozano AM, Winocur G (2011) Memory rescue and enhanced neurogenesis following electrical stimulation of the anterior thalamus in rats treated with corticosterone. Exp Neurol 232(1):100–104. doi:10.1016/j.expneurol.2011.08.023

    CAS  PubMed  Google Scholar 

  168. Stone SS, Teixeira CM, Devito LM, Zaslavsky K, Josselyn SA, Lozano AM et al (2011) Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J Neurosci 31(38):13469–13484. doi:10.1523/JNEUROSCI.3100-11.2011

    CAS  PubMed  Google Scholar 

  169. Encinas JM, Hamani C, Lozano AM, Enikolopov G (2011) Neurogenic hippocampal targets of deep brain stimulation. J Comp Neurol 519(1):6–20. doi:10.1002/cne.22503

    PubMed Central  PubMed  Google Scholar 

  170. Ridha BH, Barnes J, van de Pol LA, Schott JM, Boyes RG, Siddique MM et al (2007) Application of automated medial temporal lobe atrophy scale to Alzheimer disease. Arch Neurol 64(6):849–854. doi:10.1001/archneur.64.6.849

    PubMed  Google Scholar 

  171. Jack CR Jr, Shiung MM, Gunter JL, O’Brien PC, Weigand SD, Knopman DS et al (2004) Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology 62(4):591–600

    PubMed Central  PubMed  Google Scholar 

  172. Wang L, Swank JS, Glick IE, Gado MH, Miller MI, Morris JC et al (2003) Changes in hippocampal volume and shape across time distinguish dementia of the Alzheimer type from healthy aging. Neuroimage 20(2):667–682. doi:10.1016/S1053-8119(03)00361-6

    CAS  PubMed  Google Scholar 

  173. Lozano A (2012) Functional neurosurgery—an illustrious past, an exciting future. In: XXth Congress of the European Society for stereotactic and functional neurosurgery, Cascais, Portugal, 27 Sept 2012

    Google Scholar 

  174. Mayberg HS, Silva JA, Brannan SK, Tekell JL, Mahurin RK, McGinnis S et al (2002) The functional neuroanatomy of the placebo effect. Am J Psychiatry 159(5):728–737

    PubMed  Google Scholar 

  175. Carpenter WT Jr (2009) Placebo effect in depression. Am J Psychiatry 166(8):935. doi:10.1176/appi.ajp.2009.09030385 166/8/935 [pii]

    PubMed  Google Scholar 

  176. Mx Cohen (2012) Scientific recording in deep brain stimulation. In: Denys D, Feenstra M, Schuurman R (eds) Deep brain stimulation: a new frontier in psychiatry. Springer, New York, pp 183–191

    Google Scholar 

  177. Fraix V, Houeto JL, Lagrange C, Le Pen C, Krystkowiak P, Guehl D et al (2006) Clinical and economic results of bilateral subthalamic nucleus stimulation in Parkinson’s disease. J Neurol Neurosurg Psychiatry 77(4):443–449. doi:10.1136/jnnp.2005.077677 77/4/443 [pii]

    CAS  PubMed  Google Scholar 

  178. Kellner CH (2012) Brain stimulation in psychiatry: ECT, DBS, TMS and other modalities. Cambridge University Press, Cambridge

    Google Scholar 

  179. Kleiner-Fisman G, Herzog J, Fisman DN, Tamma F, Lyons KE, Pahwa R et al (2006) Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord 21(Suppl 14):S290–S304. doi:10.1002/mds.20962

    PubMed  Google Scholar 

  180. Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A et al (2011) Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch Neurol 68(2):165. doi:10.1001/archneurol.2010.260 archneurol.2010.260 [pii]

    PubMed  Google Scholar 

  181. Visser-Vandewalle V, van der Linden C, Temel Y, Celik H, Ackermans L, Spincemaille G et al (2005) Long-term effects of bilateral subthalamic nucleus stimulation in advanced Parkinson disease: a four year follow-up study. Parkinsonism Relat Disord 11(3):157–165. doi:10.1016/j.parkreldis.2004.10.011 S1353-8020(04)00199-3 [pii]

    PubMed  Google Scholar 

  182. Fluchere F (2010) Suivi au long cours d’une cohorte de patients parkinsoniens traites par stimulation cerebrale profonde des noyaux sous thalamiques, et operes sous anesthesie generale. Université de la Méditéranée, Marseille

    Google Scholar 

  183. Vandewalle V, van der Linden C, Groenewegen HJ, Caemaert J (1999) Stereotactic treatment of Gilles de la Tourette syndrome by high frequency stimulation of thalamus. Lancet 353(9154):724 S0140673698059649[pii]

    CAS  PubMed  Google Scholar 

  184. Lipsman N, Neimat JS, Lozano AM (2007) Deep brain stimulation for treatment-refractory obsessive-compulsive disorder: the search for a valid target. Neurosurgery 61(1):1–11 (discussion 3). doi:10.1227/01.neu.0000279719.75403.f7 00006123-200707000-00001 [pii]

    Google Scholar 

  185. Greenberg BD, Gabriels LA, Malone DA Jr, Rezai AR, Friehs GM, Okun MS et al (2010) Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience. Mol Psychiatry 15(1):64–79. doi:10.1038/mp.2008.55 mp200855 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Abelson JL, Curtis GC, Sagher O, Albucher RC, Harrigan M, Taylor SF et al (2005) Deep brain stimulation for refractory obsessive-compulsive disorder. Biol Psychiatry 57(5):510–516. doi:10.1016/j.biopsych.2004.11.042 S0006-3223(04)01285-5 [pii]

    PubMed  Google Scholar 

  187. Anderson D, Ahmed A (2003) Treatment of patients with intractable obsessive-compulsive disorder with anterior capsular stimulation. Case report. J Neurosurg 98(5):1104–1108. doi:10.3171/jns.2003.98.5.1104

    PubMed  Google Scholar 

  188. Malone DA Jr, Dougherty DD, Rezai AR, Carpenter LL, Friehs GM, Eskandar EN et al (2009) Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry 65(4):267–275. doi:10.1016/j.biopsych.2008.08.029 S0006-3223(08)01083-4 [pii]

    PubMed Central  PubMed  Google Scholar 

  189. Breiter HC, Rauch SL, Kwong KK, Baker JR, Weisskoff RM, Kennedy DN et al (1996) Functional magnetic resonance imaging of symptom provocation in obsessive-compulsive disorder. Arch Gen Psychiatry 53(7):595–606

    CAS  PubMed  Google Scholar 

  190. Saxena S, Brody AL, Schwartz JM, Baxter LR (1998) Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br J Psychiatry Suppl 35:26–37

    PubMed  Google Scholar 

  191. Baxter LR Jr, Schwartz JM, Mazziotta JC, Phelps ME, Pahl JJ, Guze BH et al (1988) Cerebral glucose metabolic rates in nondepressed patients with obsessive-compulsive disorder. Am J Psychiatry 145(12):1560–1563

    PubMed  Google Scholar 

  192. Abosch A, Cosgrove GR (2008) Biological basis for the surgical treatment of depression. Neurosurg Focus 25(1):E2. doi:10.3171/FOC/2008/25/7/E2

    PubMed  Google Scholar 

  193. Aouizerate B, Cuny E, Martin-Guehl C, Guehl D, Amieva H, Benazzouz A et al (2004) Deep brain stimulation of the ventral caudate nucleus in the treatment of obsessive-compulsive disorder and major depression. Case report. J Neurosurg 101(4):682–686. doi:10.3171/jns.2004.101.4.0682

    PubMed  Google Scholar 

  194. Halmi KA, Tozzi F, Thornton LM, Crow S, Fichter MM, Kaplan AS et al (2005) The relation among perfectionism, obsessive-compulsive personality disorder and obsessive-compulsive disorder in individuals with eating disorders. Int J Eat Disord 38(4):371–374. doi:10.1002/eat.20190

    PubMed  Google Scholar 

  195. Sherman BJ, Savage CR, Eddy KT, Blais MA, Deckersbach T, Jackson SC et al (2006) Strategic memory in adults with anorexia nervosa: are there similarities to obsessive compulsive spectrum disorders? Int J Eat Disord 39(6):468–476. doi:10.1002/eat.20300

    PubMed  Google Scholar 

  196. Barbier J, Gabriels L, van Laere K, Nuttin B (2011) Successful anterior capsulotomy in comorbid anorexia nervosa and obsessive-compulsive disorder: case report. Neurosurgery 69(3):E745–E751 (discussion E51). doi:10.1227/NEU.0b013e31821964d2

    Google Scholar 

  197. Chang CH, Chen SY, Hsiao YL, Tsai ST, Tsai HC (2010) Hypomania with hypersexuality following bilateral anterior limb stimulation in obsessive-compulsive disorder. J Neurosurg 112(6):1299–1300. doi:10.3171/2009.10.JNS09918

    PubMed  Google Scholar 

  198. Epstein J, Pan H, Kocsis JH, Yang Y, Butler T, Chusid J et al (2006) Lack of ventral striatal response to positive stimuli in depressed versus normal subjects. Am J Psychiatry 163(10):1784–1790. doi:10.1176/appi.ajp.163.10.1784 163/10/1784 [pii]

    PubMed  Google Scholar 

  199. Tremblay LK, Naranjo CA, Graham SJ, Herrmann N, Mayberg HS, Hevenor S et al (2005) Functional neuroanatomical substrates of altered reward processing in major depressive disorder revealed by a dopaminergic probe. Arch Gen Psychiatry 62(11):1228–1236. doi:10.1001/archpsyc.62.11.1228 62/11/1228 [pii]

    PubMed  Google Scholar 

  200. Schlaepfer TE, Cohen MX, Frick C, Kosel M, Brodesser D, Axmacher N et al (2008) Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33(2):368–377. doi:10.1038/sj.npp.1301408 1301408 [pii]

    PubMed  Google Scholar 

  201. Gorwood P (2008) Neurobiological mechanisms of anhedonia. Dialogues Clin Neurosci 10(3):291–299

    PubMed Central  PubMed  Google Scholar 

  202. Hauptman JS, DeSalles AA, Espinoza R, Sedrak M, Ishida W (2008) Potential surgical targets for deep brain stimulation in treatment-resistant depression. Neurosurg Focus 25(1):E3. doi:10.3171/FOC/2008/25/7/E3

    PubMed  Google Scholar 

  203. Coenen VA, Schlaepfer TE, Maedler B, Panksepp J (2011) Cross-species affective functions of the medial forebrain bundle-implications for the treatment of affective pain and depression in humans. Neurosci Biobehav Rev 35(9):1971–1981. doi:10.1016/j.neubiorev.2010.12.009

    PubMed  Google Scholar 

  204. Sturm V, Lenartz D, Koulousakis A, Treuer H, Herholz K, Klein JC et al (2003) The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive- and anxiety-disorders. J Chem Neuroanat 26(4):293–299 S0891061803001030[pii]

    PubMed  Google Scholar 

  205. Bewernick BH, Hurlemann R, Matusch A, Kayser S, Grubert C, Hadrysiewicz B et al (2010) Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol Psychiatry 67(2):110–116. doi:10.1016/j.biopsych.2009.09.013 S0006-3223(09)01094-4 [pii]

    PubMed  Google Scholar 

  206. Huff W, Lenartz D, Schormann M, Lee SH, Kuhn J, Koulousakis A et al (2010) Unilateral deep brain stimulation of the nucleus accumbens in patients with treatment-resistant obsessive-compulsive disorder: outcomes after one year. Clin Neurol Neurosurg 112(2):137–143. doi:10.1016/j.clineuro.2009.11.006 S0303-8467(09)00303-5 [pii]

    PubMed  Google Scholar 

  207. Li N, Wang J, Wang XL, Chang CW, Ge SN, Gao L et al (2012) Nucleus accumbens surgery for addiction. World Neurosurg. doi:10.1016/j.wneu.2012.10.007

    Google Scholar 

  208. Voges J, Muller U, Bogerts B, Munte T, Heinze HJ (2012) DBS surgery for alcohol addiction. World Neurosurg. doi:10.1016/j.wneu.2012.07.011

    PubMed  Google Scholar 

  209. Zhou H, Xu J, Jiang J (2011) Deep brain stimulation of nucleus accumbens on heroin-seeking behaviors: a case report. Biol Psychiatry 69(11):e41–e42. doi:10.1016/j.biopsych.2011.02.012 S0006-3223(11)00147-8 [pii]

    PubMed  Google Scholar 

  210. Valencia-Alfonso CE, Luigjes J, Smolders R, Cohen MX, Levar N, Mazaheri A et al (2012) Effective deep brain stimulation in heroin addiction: a case report with complementary intracranial electroencephalogram. Biol Psychiatry 71(8):e35–e37. doi:10.1016/j.biopsych.2011.12.013

    PubMed  Google Scholar 

  211. Sun B, Liu W (2012) Surgical treatments for drug addictons in humans. In: Denys D, Feenstra M, Schuurman R (eds) Deep Brain Stimulation: a new frontier in psychiatry. Springer, New York, pp 131–140

    Google Scholar 

  212. Ardouin C, Voon V, Worbe Y, Abouazar N, Czernecki V, Hosseini H et al (2006) Pathological gambling in Parkinson’s disease improves on chronic subthalamic nucleus stimulation. Mov Disord 21(11):1941–1946. doi:10.1002/mds.21098

    PubMed  Google Scholar 

  213. Temel Y, Blokland A, Steinbusch HW, Visser-Vandewalle V (2005) The functional role of the subthalamic nucleus in cognitive and limbic circuits. Prog Neurobiol 76(6):393–413. doi:10.1016/j.pneurobio.2005.09.005 S0301-0082(05)00104-8 [pii]

    CAS  PubMed  Google Scholar 

  214. Nowinski WL, Belov D, Pollak P, Benabid AL (2005) Statistical analysis of 168 bilateral subthalamic nucleus implantations by means of the probabilistic functional atlas. Neurosurgery 57(4 Suppl):319–330 (discussion 30). doi:00006123-200510004-00014 [pii]

    Google Scholar 

  215. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20(1):91–127. doi:016501739400007C [pii]

    Google Scholar 

  216. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20(1):128–154. doi:016501739400008D [pii]

    Google Scholar 

  217. Haynes WI, Mallet L (2012) What is the role of the subthalamic nucleus in OCD. Elements and insights from DBS. In: Denys D, Feenstra M, Schuurman R (eds) Deep brain stimulation: a new frontier in psychiatry. Springer, New York, pp 53–60

    Google Scholar 

  218. Chabardes S, Polosan M, Krack P, Bastin J, Krainik A, David O et al (2012) Deep brain stimulation for obsessive-compulsive disorder: subthalamic nucleus target. World Neurosurg. doi:10.1016/j.wneu.2012.03.010 S1878-8750(12)00413-5 [pii]

  219. Mallet L, Polosan M, Jaafari N, Baup N, Welter ML, Fontaine D et al (2008) Subthalamic nucleus stimulation in severe obsessive-compulsive disorder. N Engl J Med 359(20):2121–2134. doi:10.1056/NEJMoa0708514 359/20/2121 [pii]

    CAS  PubMed  Google Scholar 

  220. Jedynak CP (2005) Non \( {\grave{a}}\) la nouvelle psychochirurgie des TOC. La Lettre du Neurologue 9:195–196

    Google Scholar 

  221. Berney A, Vingerhoets F, Perrin A, Guex P, Villemure JG, Burkhard PR et al (2002) Effect on mood of subthalamic DBS for Parkinson’s disease: a consecutive series of 24 patients. Neurology 59(9):1427–1429

    CAS  PubMed  Google Scholar 

  222. Doshi PK, Chhaya N, Bhatt MH (2002) Depression leading to attempted suicide after bilateral subthalamic nucleus stimulation for Parkinson’s disease. Mov Disord 17(5):1084–1085. doi:10.1002/mds.10198

    PubMed  Google Scholar 

  223. Thobois S, Mertens P, Guenot M, Hermier M, Mollion H, Bouvard M et al (2002) Subthalamic nucleus stimulation in Parkinson’s disease: clinical evaluation of 18 patients. J Neurol 249(5):529–534. doi:10.1007/s004150200059

    CAS  PubMed  Google Scholar 

  224. Heo JH, Lee KM, Paek SH, Kim MJ, Lee JY, Kim JY et al (2008) The effects of bilateral subthalamic nucleus deep brain stimulation (STN DBS) on cognition in Parkinson disease. J Neurol Sci 273(1–2):19–24. doi:10.1016/j.jns.2008.06.010 S0022-510X(08)00270-0 [pii]

    PubMed  Google Scholar 

  225. Kaiser I, Kryspin-Exner I, Brucke T, Volc D, Alesch F (2008) Long-term effects of STN DBS on mood: psychosocial profiles remain stable in a 3-year follow-up. BMC Neurol 8:43. doi:10.1186/1471-2377-8-43 1471-2377-8-43 [pii]

    PubMed Central  PubMed  Google Scholar 

  226. Witt K, Daniels C, Reiff J, Krack P, Volkmann J, Pinsker MO et al (2008) Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: a randomised, multicentre study. Lancet Neurol 7(7):605–614. doi:10.1016/S1474-4422(08)70114-5 S1474-4422(08)70114-5 [pii]

    PubMed  Google Scholar 

  227. Ardouin C, Pillon B, Peiffer E, Bejjani P, Limousin P, Damier P et al (1999) Bilateral subthalamic or pallidal stimulation for Parkinson’s disease affects neither memory nor executive functions: a consecutive series of 62 patients. Ann Neurol 46(2):217–223

    CAS  PubMed  Google Scholar 

  228. Volkmann J, Allert N, Voges J, Weiss PH, Freund HJ, Sturm V (2001) Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD. Neurology 56(4):548–551

    CAS  PubMed  Google Scholar 

  229. Daniele A, Albanese A, Contarino MF, Zinzi P, Barbier A, Gasparini F et al (2003) Cognitive and behavioural effects of chronic stimulation of the subthalamic nucleus in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 74(2):175–182

    CAS  PubMed  Google Scholar 

  230. Castelli L, Perozzo P, Zibetti M, Crivelli B, Morabito U, Lanotte M et al (2006) Chronic deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: effects on cognition, mood, anxiety and personality traits. Eur Neurol 55(3):136–144. doi:10.1159/000093213 93213 [pii]

    CAS  PubMed  Google Scholar 

  231. Wang X, Chang C, Geng N, Li N, Wang J, Ma J et al (2009) Long-term effects of bilateral deep brain stimulation of the subthalamic nucleus on depression in patients with Parkinson’s disease. Parkinsonism Relat Disord 15(8):587–591. doi:10.1016/j.parkreldis.2009.02.006 S1353-8020(09)00056-X [pii]

    PubMed  Google Scholar 

  232. Houeto JL, Welter ML, Bejjani PB, Tezenas du Montcel S, Bonnet AM, Mesnage V et al (2003) Subthalamic stimulation in Parkinson disease: intraoperative predictive factors. Arch Neurol 60(5):690–694. doi:10.1001/archneur.60.5.690 60/5/690 [pii]

    Google Scholar 

  233. Pillon B, Ardouin C, Damier P, Krack P, Houeto JL, Klinger H et al (2000) Neuropsychological changes between “off” and “on” STN or GPi stimulation in Parkinson’s disease. Neurology 55(3):411–418

    CAS  PubMed  Google Scholar 

  234. Saint-Cyr JA, Trepanier LL, Kumar R, Lozano AM, Lang AE (2000) Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain 123(10):2091–2108

    PubMed  Google Scholar 

  235. Hershey T, Revilla FJ, Wernle A, Gibson PS, Dowling JL, Perlmutter JS (2004) Stimulation of STN impairs aspects of cognitive control in PD. Neurology 62(7):1110–1114

    CAS  PubMed  Google Scholar 

  236. Mayberg HS (2003) Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. Br Med Bull 65:193–207

    PubMed  Google Scholar 

  237. Seminowicz DA, Mayberg HS, McIntosh AR, Goldapple K, Kennedy S, Segal Z et al (2004) Limbic-frontal circuitry in major depression: a path modeling metanalysis. Neuroimage 22(1):409–418. doi:10.1016/j.neuroimage.2004.01.015 S1053811904000497 [pii]

    CAS  PubMed  Google Scholar 

  238. Nobler MS, Oquendo MA, Kegeles LS, Malone KM, Campbell CC, Sackeim HA et al (2001) Decreased regional brain metabolism after ect. Am J Psychiatry 158(2):305–308

    CAS  PubMed  Google Scholar 

  239. Mottaghy FM, Keller CE, Gangitano M, Ly J, Thall M, Parker JA et al (2002) Correlation of cerebral blood flow and treatment effects of repetitive transcranial magnetic stimulation in depressed patients. Psychiatry Res 115(1–2):1–14 S092549270200032X [pii]

    PubMed  Google Scholar 

  240. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C et al (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45(5):651–660. doi:10.1016/j.neuron.2005.02.014 S0896-6273(05)00156-X [pii]

    CAS  PubMed  Google Scholar 

  241. Inagaki M, Yoshikawa E, Kobayakawa M, Matsuoka Y, Sugawara Y, Nakano T et al (2007) Regional cerebral glucose metabolism in patients with secondary depressive episodes after fatal pancreatic cancer diagnosis. J Affect Disord 99(1–3):231–236. doi:10.1016/j.jad.2006.08.019 S0165-0327(06)00349-1 [pii]

    CAS  PubMed  Google Scholar 

  242. Kumano H, Ida I, Oshima A, Takahashi K, Yuuki N, Amanuma M et al (2007) Brain metabolic changes associated with predispotion to onset of major depressive disorder and adjustment disorder in cancer patients–a preliminary PET study. J Psychiatr Res 41(7):591–599. doi:10.1016/j.jpsychires.2006.03.006 S0022-3956(06)00061-6 [pii]

    CAS  PubMed  Google Scholar 

  243. Kopell BH, Greenberg BD (2008) Anatomy and physiology of the basal ganglia: implications for DBS in psychiatry. Neurosci Biobehav Rev 32(3):408–422. doi:10.1016/j.neubiorev.2007.07.004 S0149-7634(07)00076-0 [pii]

    PubMed  Google Scholar 

  244. Johansen-Berg H, Gutman DA, Behrens TE, Matthews PM, Rushworth MF, Katz E et al (2008) Anatomical connectivity of the subgenual cingulate region targeted with deep brain stimulation for treatment-resistant depression. Cereb Cortex 18(6):1374–1383. doi:10.1093/cercor/bhm167 bhm167 [pii]

    CAS  PubMed  Google Scholar 

  245. Sedrak M, Gorgulho A, De Salles AF, Frew A, Behnke E, Ishida W et al (2008) The role of modern imaging modalities on deep brain stimulation targeting for mental illness. Acta Neurochir Suppl 101:3–7

    CAS  PubMed  Google Scholar 

  246. Hamani C, Mayberg H, Snyder B, Giacobbe P, Kennedy S, Lozano AM (2009) Deep brain stimulation of the subcallosal cingulate gyrus for depression: anatomical location of active contacts in clinical responders and a suggested guideline for targeting. J Neurosurg 111(6):1209–1215. doi:10.3171/2008.10.JNS08763

    PubMed  Google Scholar 

  247. Lozano AM, Mayberg HS, Giacobbe P, Hamani C, Craddock RC, Kennedy SH (2008) Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol Psychiatry 64(6):461–467. doi:10.1016/j.biopsych.2008.05.034 S0006-3223(08)00703-8 [pii]

    PubMed  Google Scholar 

  248. McNeely HE, Mayberg HS, Lozano AM, Kennedy SH (2008) Neuropsychological impact of Cg25 deep brain stimulation for treatment-resistant depression: preliminary results over 12 months. J Nerv Ment Dis 196(5):405–410. doi:10.1097/NMD.0b013e3181710927 00005053-200805000-00007 [pii]

    PubMed  Google Scholar 

  249. Coenen VA, Bewernick B, Kayser S, Maedler B, Schlaepfer TE (2012) Deep brain stimulation of the human medial forebrain bundle (slmfb-dbs) for refractory depression—results from the foresee study. In: XXth Congress of the European Society for stereotactic and functional neurosurgery, Cascais, Portugal, 27 Sept 2012

    Google Scholar 

  250. Jimenez F, Velasco F, Salin-Pascual R, Hernandez JA, Velasco M, Criales JL et al (2005) A patient with a resistant major depression disorder treated with deep brain stimulation in the inferior thalamic peduncle. Neurosurgery 57(3):585–593 (discussion 93). doi:00006123-200509000-00027 [pii]

    Google Scholar 

  251. Jimenez-Ponce F, Velasco-Campos F, Castro-Farfan G, Nicolini H, Velasco AL, Salin-Pascual R et al (2009) Preliminary study in patients with obsessive-compulsive disorder treated with electrical stimulation in the inferior thalamic peduncle. Neurosurgery 65(6 Suppl):203–209 (discussion 9). doi:10.1227/01.NEU.0000345938.39199.90 00006123-200912001-00026 [pii]

    Google Scholar 

  252. Hong S, Hikosaka O (2008) The globus pallidus sends reward-related signals to the lateral habenula. Neuron 60(4):720–729. doi:10.1016/j.neuron.2008.09.035 S0896-6273(08)00837-4 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  253. Matsumoto M, Hikosaka O (2009) Representation of negative motivational value in the primate lateral habenula. Nat Neurosci 12(1):77–84. doi:10.1038/nn.2233 nn.2233 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  254. Geisler S, Trimble M (2008) The lateral habenula: no longer neglected. CNS Spectr 13(6):484–489

    PubMed  Google Scholar 

  255. Hikosaka O, Sesack SR, Lecourtier L, Shepard PD (2008) Habenula: crossroad between the basal ganglia and the limbic system. J Neurosci 28(46):11825–11829. doi:10.1523/JNEUROSCI.3463-08.2008 28/46/11825 [pii]

    CAS  PubMed Central  PubMed  Google Scholar 

  256. Morra JT (2007) The neural substrate of disappointment revealed? J Neurosci 27(40):10647–10648. doi:10.1523/JNEUROSCI.3026-07.2007 27/40/10647 [pii]

    CAS  PubMed  Google Scholar 

  257. Winter C, Vollmayr B, Djodari-Irani A, Klein J, Sartorius A (2011) Pharmacological inhibition of the lateral habenula improves depressive-like behavior in an animal model of treatment resistant depression. Behav Brain Res 216(1):463–465. doi:10.1016/j.bbr.2010.07.034 S0166-4328(10)00535-8 [pii]

    CAS  PubMed  Google Scholar 

  258. Sartorius A, Henn FA (2007) Deep brain stimulation of the lateral habenula in treatment resistant major depression. Med Hypotheses 69(6):1305–1308. doi:10.1016/j.mehy.2007.03.021 S0306-9877(07)00247-2 [pii]

    PubMed  Google Scholar 

  259. Sartorius A, Kiening KL, Kirsch P, von Gall CC, Haberkorn U, Unterberg AW et al (2010) Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol Psychiatry 67(2):e9–e11. doi:10.1016/j.biopsych.2009.08.027 S0006-3223(09)01047-6 [pii]

    PubMed  Google Scholar 

  260. de Koning PP, Figee M, van den Munckhof P, Schuurman PR, Denys D (2011) Current status of deep brain stimulation for obsessive-compulsive disorder: a clinical review of different targets. Curr Psychiatry Rep 13(4):274–282. doi:10.1007/s11920-011-0200-8

    PubMed  Google Scholar 

  261. Sarnecki T, Temel Y (2011) Deep brain stimulation for treatment-resistant depression: a review. Open Neurosurg J 4:1–6

    Google Scholar 

  262. Pansaon Piedad JC, Rickards HE, Cavanna AE (2012) What patients with gilles de la tourette syndrome should be treated with deep brain stimulation and what is the best target? Neurosurgery 71(1):173–192. doi:10.1227/NEU.0b013e3182535a00

  263. Rogers MH, Anderson PB (2009) Deep brain stimulation: applications, complications and side effects. Nova Biomedical Books, New York

    Google Scholar 

  264. Maciunas RJ, Maddux BN, Riley DE, Whitney CM, Schoenberg MR, Ogrocki PJ et al (2007) Prospective randomized double-blind trial of bilateral thalamic deep brain stimulation in adults with Tourette syndrome. J Neurosurg 107(5):1004–1014. doi:10.3171/JNS-07/11/1004

    PubMed  Google Scholar 

  265. Welter ML, Mallet L, Houeto JL, Karachi C, Czernecki V, Cornu P et al (2008) Internal pallidal and thalamic stimulation in patients with Tourette syndrome. Arch Neurol 65(7):952–957. doi:10.1001/archneur.65.7.952 65/7/952 [pii]

    PubMed  Google Scholar 

  266. Hoflich GK, Kasper S, Hufnagel A et al (1993) Application of transcranial magnetic stimulation in treatment of drug-resistant major depression: a report of two cases. Hum Psychopharmacol Bull 8:361–365

    Google Scholar 

  267. Pascual-Leone A, Rubio B, Pallardo F, Catala MD (1996) Rapid-rate transcranial magnetic stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. Lancet 348(9022):233–237. S0140673696012196 [pii]

    CAS  PubMed  Google Scholar 

  268. Martin JL, Barbanoj MJ, Schlaepfer TE, Thompson E, Perez V, Kulisevsky J (2003) Repetitive transcranial magnetic stimulation for the treatment of depression. Systematic review and meta-analysis. Br J Psychiatry 182:480–491

    PubMed  Google Scholar 

  269. Benadhira R, Saba G, Samaan A, Dumortier G, Lipski H, Gastal D et al (2005) Transcranial magnetic stimulation for refractory depression. Am J Psychiatry 162(1):193. doi:10.1176/appi.ajp.162.1.193 162/1/193 [pii]

    PubMed  Google Scholar 

  270. Januel D, Dumortier G, Verdon CM, Stamatiadis L, Saba G, Cabaret W et al (2006) A double-blind sham controlled study of right prefrontal repetitive transcranial magnetic stimulation (rTMS): therapeutic and cognitive effect in medication free unipolar depression during 4 weeks. Prog Neuropsychopharmacol Biol Psychiatry 30(1):126–130. doi:10.1016/j.pnpbp.2005.08.016 S0278-5846(05)00279-4 [pii]

    PubMed  Google Scholar 

  271. Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1(8437):1106–1107. S0140-6736(85)92413-4 [pii]

    Google Scholar 

  272. Rossi S, De Capua A, Ulivelli M, Bartalini S, Falzarano V, Filippone G et al (2007) Effects of repetitive transcranial magnetic stimulation on chronic tinnitus: a randomised, crossover, double blind, placebo controlled study. J Neurol Neurosurg Psychiatry 78(8):857–863. doi:10.1136/jnnp.2006.105007 jnnp.2006.105007 [pii]

    PubMed  Google Scholar 

  273. Rosenberg O, Roth Y, Kotler M, Zangen A, Dannon P (2011) Deep transcranial magnetic stimulation for the treatment of auditory hallucinations: a preliminary open-label study. Ann Gen Psychiatry 10(1):3. doi:10.1186/1744-859X-10-3 1744-859X-10-3 [pii]

    PubMed Central  PubMed  Google Scholar 

  274. Husted DS, Shapira NA (2004) A review of the treatment for refractory obsessive-compulsive disorder: from medicine to deep brain stimulation. CNS Spectr 9(11):833–847

    PubMed  Google Scholar 

  275. Jaafari N, Rachid F, Rotge JY, Polosan M, El-Hage W, Belin D et al (2012) Safety and efficacy of repetitive transcranial magnetic stimulation in the treatment of obsessive-compulsive disorder: a review. World J Biol Psychiatry 13(3):164–177. doi:10.3109/15622975.2011.575177

    PubMed  Google Scholar 

  276. Saillet S, Langlois M, Feddersen B, Minotti L, Vercueil L, Chabardes S et al (2009) Manipulating the epileptic brain using stimulation: a review of experimental and clinical studies. Epileptic Disord 11(2):100–112. doi:10.1684/epd.2009.0255 epd.2009.0255 [pii]

    PubMed  Google Scholar 

  277. Williams JA, Imamura M, Fregni F (2009) Updates on the use of non-invasive brain stimulation in physical and rehabilitation medicine. J Rehabil Med 41(5):305–311. doi:10.2340/16501977-0356

    PubMed  Google Scholar 

  278. Passard A, Attal N, Benadhira R, Brasseur L, Saba G, Sichere P et al (2007) Effects of unilateral repetitive transcranial magnetic stimulation of the motor cortex on chronic widespread pain in fibromyalgia. Brain 130(Pt 10):2661–2670. doi:10.1093/brain/awm189 awm189 [pii]

    CAS  PubMed  Google Scholar 

  279. (ANAES) ANdAedÉeS (ed) (1998) Indications et Modalités de l’Electroconvulsothérapie—Recommandations Professionnelles. Service Communication et Diffusion, Paris

    Google Scholar 

  280. Grunhaus L, Schreiber S, Dolberg OT, Polak D, Dannon PN (2003) A randomized controlled comparison of electroconvulsive therapy and repetitive transcranial magnetic stimulation in severe and resistant nonpsychotic major depression. Biol Psychiatry 53(4):324–331. S0006322302014993 [pii]

    Google Scholar 

  281. Dannon PN, Grunhaus L (2003) Repetitive transcranial magnetic stimulation is effective following repeated courses in the treatment of major depressive disorder–a case report. Hum Psychopharmacol 18(4):313–315. doi:10.1002/hup.478

    PubMed  Google Scholar 

  282. Janicak PG, Dowd SM, Martis B, Alam D, Beedle D, Krasuski J et al (2002) Repetitive transcranial magnetic stimulation versus electroconvulsive therapy for major depression: preliminary results of a randomized trial. Biol Psychiatry 51(8):659–667. S0006322301013543 [pii]

    Google Scholar 

  283. Pridmore S, Bruno R, Turnier-Shea Y, Reid P, Rybak M (2000) Comparison of unlimited numbers of rapid transcranial magnetic stimulation (rTMS) and ECT treatment sessions in major depressive episode. Int J Neuropsychopharmacol 3(2):129–134. doi:10.1017/S1461145700001784 S1461145700001784 [pii]

    PubMed  Google Scholar 

  284. Arsonval A (1896) Dispositifs pour la mesure des courants alternatifs de toutes fréquences. C R Soc Biol (Paris) 2:450–451

    Google Scholar 

  285. Magnuson CE, Stevens HC (1914) Visual sensations created by a magnetic field. Philosoph Mag 28:188–207

    Google Scholar 

  286. Baxter LR Jr, Schwartz JM, Phelps ME, Mazziotta JC, Guze BH, Selin CE et al (1989) Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 46(3):243–250

    CAS  PubMed  Google Scholar 

  287. Kito S, Fujita K, Koga Y (2008) Changes in regional cerebral blood flow after repetitive transcranial magnetic stimulation of the left dorsolateral prefrontal cortex in treatment-resistant depression. J Neuropsychiatry Clin Neurosci 20(1):74–80. doi:10.1176/appi.neuropsych.20.1.74 20/1/74 [pii]

    PubMed  Google Scholar 

  288. Richieri R, Adida M, Dumas R, Fakra E, Azorin JM, Pringuey D et al (2010) Affective disorders and repetitive transcranial magnetic stimulation: therapeutic innovations. Encephale 36(Suppl 6):S197–S201. doi:10.1016/S0013-7006(10)70057-9 S0013-7006(10)70057-9 [pii]

    PubMed  Google Scholar 

  289. Brunelin J, Poulet E, Boeuve C, Zeroug-vial H, d’Amato T, Saoud M (2007) Efficacy of repetitive transcranial magnetic stimulation (rTMS) in major depression: a review. Encephale 33(2):126–134. MDOI-ENC-4-2007-33-2-0013-7006-101019-200730012 [pii]

    CAS  PubMed  Google Scholar 

  290. Millet B (2009) Electrostimulation techniques in treatment for severe depression. Encephale 35(Suppl 7):S325–S329. doi:10.1016/S0013-7006(09)73496-7 S0013-7006(09)73496-7 [pii]

    PubMed  Google Scholar 

  291. Holtzheimer PE 3rd, Russo J, Avery DH (2001) A meta-analysis of repetitive transcranial magnetic stimulation in the treatment of depression. Psychopharmacol Bull 35(4):149–169

    PubMed  Google Scholar 

  292. Kozel FA, George MS (2002) Meta-analysis of left prefrontal repetitive transcranial magnetic stimulation (rTMS) to treat depression. J Psychiatr Pract 8(5):270–275. 00131746-200209000-00003 [pii]

    PubMed  Google Scholar 

  293. Gross M, Nakamura L, Pascual-Leone A, Fregni F (2007) Has repetitive transcranial magnetic stimulation (rTMS) treatment for depression improved? A systematic review and meta-analysis comparing the recent vs. the earlier rTMS studies. Acta Psychiatr Scand 116(3):165–173. doi:10.1111/j.1600-0447.2007.01049.x ACP1049 [pii]

  294. Lam RW, Chan P, Wilkins-Ho M, Yatham LN (2008) Repetitive transcranial magnetic stimulation for treatment-resistant depression: a systematic review and metaanalysis. Can J Psychiatry 53(9):621–631

    PubMed  Google Scholar 

  295. Schutter DJ, Laman DM, van Honk J, Vergouwen AC, Koerselman GF (2009) Partial clinical response to 2 weeks of 2 Hz repetitive transcranial magnetic stimulation to the right parietal cortex in depression. Int J Neuropsychopharmacol 12(5):643–650. doi:10.1017/S1461145708009553 S1461145708009553 [pii]

    PubMed  Google Scholar 

  296. Velasco F, Arguelles C, Carrillo-Ruiz JD, Castro G, Velasco AL, Jimenez F et al (2008) Efficacy of motor cortex stimulation in the treatment of neuropathic pain: a randomized double-blind trial. J Neurosurg 108(4):698–706. doi:10.3171/JNS/2008/108/4/0698

    PubMed  Google Scholar 

  297. Friedland DR, Gaggl W, Runge-Samuelson C, Ulmer JL, Kopell BH (2007) Feasibility of auditory cortical stimulation for the treatment of tinnitus. Otol Neurotol 28(8):1005–1012. doi:10.1097/MAO.0b013e318159ebf5 00129492-200712000-00004 [pii]

    PubMed  Google Scholar 

  298. Priori A, Lefaucheur JP (2007) Chronic epidural motor cortical stimulation for movement disorders. Lancet Neurol 6(3):279–286. doi:10.1016/S1474-4422(07)70056-X S1474-4422(07)70056-X [pii]

    PubMed  Google Scholar 

  299. Brown JA, Lutsep HL, Weinand M, Cramer SC (2006) Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study. Neurosurgery 58(3):464–473. doi:10.1227/01.NEU.0000197100.63931.04 00006123-200603000-00007 [pii]

    PubMed  Google Scholar 

  300. Amiaz R, Levy D, Vainiger D, Grunhaus L, Zangen A (2009) Repeated high-frequency transcranial magnetic stimulation over the dorsolateral prefrontal cortex reduces cigarette craving and consumption. Addiction 104:653–660

    PubMed  Google Scholar 

  301. Kopell BH (2011) Epidural cortical stimulation (EpCS) of the left dorsolateral prefrontal cortex for refractory major depressive disorder. Neurosurgey

    Google Scholar 

  302. Nahas Z, Anderson BS, Borckardt J, Arana AB, George MS, Reeves ST et al (2010) Bilateral epidural prefrontal cortical stimulation for treatment-resistant depression. Biol Psychiatry 67(2):101–109. doi:10.1016/j.biopsych.2009.08.021 S0006-3223(09)01020-8 [pii]

    PubMed Central  PubMed  Google Scholar 

  303. Kito S, Fujita K, Koga Y (2008) Regional cerebral blood flow changes after low-frequency transcranial magnetic stimulation of the right dorsolateral prefrontal cortex in treatment-resistant depression. Neuropsychobiology 58(1):29–36. doi:10.1159/000154477 000154477 [pii]

    PubMed  Google Scholar 

  304. Canavero S, Bonicalzi V (2002) Therapeutic extradural cortical stimulation for central and neuropathic pain: a review. Clin J Pain 18(1):48–55

    PubMed  Google Scholar 

  305. Lefaucheur JP (2004) Transcranial magnetic stimulation in the management of pain. Suppl Clin Neurophysiol 57:737–748

    PubMed  Google Scholar 

  306. Lefaucheur JP, Drouot X, Menard-Lefaucheur I, Nguyen JP (2004) Neuropathic pain controlled for more than a year by monthly sessions of repetitive transcranial magnetic stimulation of the motor cortex. Neurophysiol Clin 34(2):91–95. doi:10.1016/j.neucli.2004.02.001 S098770530400005X [pii]

    PubMed  Google Scholar 

  307. Migita K, Uozumi T, Arita K, Monden S (1995) Transcranial magnetic coil stimulation of motor cortex in patients with central pain. Neurosurgery 36(5):1037–1039 (discussion 9–40)

    Google Scholar 

  308. Dougherty DD, Thase ME, Howland RH, Evans KC, Harsch H, Kondziolka D (eds) (2008) Feasibility study of an implantable cortical stimulation system for patients with major depressive disorder. Society of Biological Psychiatry 63rd Annual Meeting, Washington, D.C

    Google Scholar 

  309. Kopell BH, Halverson J, Butson CR, Dickinson M, Bobholz J, Harsch H et al (2011) Epidural cortical stimulation of the left dorsolateral prefrontal cortex for refractory major depressive disorder. Neurosurgery 69(5):1015–1029 (discussion 29). doi:10.1227/NEU.0b013e318229cfcd

    Google Scholar 

  310. Spielmans GI (2012) Unimpressive efficacy and unclear safety assessment of epidural cortical stimulation for refractory major depressive disorder. Neurosurgery 70(1):E268–E269; author reply E9. doi:10.1227/NEU.0b013e31823a3206

    Google Scholar 

  311. Achem (1994)

    Google Scholar 

  312. Handforth (1998)

    Google Scholar 

  313. Elger G, Hoppe C, Falkai P, Rush AJ, Elger CE (2000) Vagus nerve stimulation is associated with mood improvements in epilepsy patients. Epilepsy Res 42(2–3):203–210. S0920-1211(00)00181-9 [pii]

    CAS  PubMed  Google Scholar 

  314. Carpenter LL, Friehs GM, Price LH (2003) Cervical vagus nerve stimulation for treatment-resistant depression. Neurosurg Clin N Am 14(2):275–282

    PubMed  Google Scholar 

  315. Harden CL, Pulver MC, Ravdin LD, Nikolov B, Halper JP, Labar DR (2000) A pilot study of mood in epilepsy patients treated with vagus nerve stimulation. Epilepsy Behav 1(2):93–99. doi:10.1006/ebeh.2000.0046 S1525-5050(00)90046-5 [pii]

    PubMed  Google Scholar 

  316. Hoppe C, Helmstaedter C, Scherrmann J, Elger CE (2001) Self-reported mood changes following 6 months of vagus nerve stimulation in epilepsy patients. Epilepsy Behav 2(4):335–342. doi:10.1006/ebeh.2001.0194 S1525-5050(01)90194-5 [pii]

    CAS  PubMed  Google Scholar 

  317. Nemeroff CB, Mayberg HS, Krahl SE, McNamara J, Frazer A, Henry TR et al (2006) VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms. Neuropsychopharmacology 31(7):1345–1355. doi:10.1038/sj.npp.1301082 1301082 [pii]

    PubMed  Google Scholar 

  318. Yatham LN (2004) Newer anticonvulsants in the treatment of bipolar disorder. J Clin Psychiatry 65(Suppl 10):28–35

    CAS  PubMed  Google Scholar 

  319. Groves DA, Brown VJ (2005) Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev 29(3):493–500. doi:10.1016/j.neubiorev.2005.01.004

    PubMed  Google Scholar 

  320. Zobel A, Joe A, Freymann N, Clusmann H, Schramm J, Reinhardt M et al (2005) Changes in regional cerebral blood flow by therapeutic vagus nerve stimulation in depression: an exploratory approach. Psychiatry Res 139(3):165–179. doi:10.1016/j.pscychresns.2005.02.010 S0925-4927(05)00091-0 [pii]

    PubMed  Google Scholar 

  321. Henry TR, Bakay RA, Votaw JR, Pennell PB, Epstein CM, Faber TL et al (1998) Brain blood flow alterations induced by therapeutic vagus nerve stimulation in partial epilepsy: I. Acute effects at high and low levels of stimulation. Epilepsia 39(9):983–990

    CAS  PubMed  Google Scholar 

  322. Drevets WC, Price JL, Bardgett ME, Reich T, Todd RD, Raichle ME (2002) Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels. Pharmacol Biochem Behav 71(3):431–447. S0091305701006876 [pii]

    CAS  PubMed  Google Scholar 

  323. Mayberg HS, Brannan SK, Tekell JL, Silva JA, Mahurin RK, McGinnis S et al (2000) Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 48(8):830–843. S0006-3223(00)01036-2 [pii]

    CAS  PubMed  Google Scholar 

  324. Kosel M, Brockmann H, Frick C, Zobel A, Schlaepfer TE (2011) Chronic vagus nerve stimulation for treatment-resistant depression increases regional cerebral blood flow in the dorsolateral prefrontal cortex. Psychiatry Res 191(3):153–159. doi:10.1016/j.pscychresns.2010.11.004 S0925-4927(10)00385-9 [pii]

    PubMed  Google Scholar 

  325. Jobe PC, Dailey JW, Wernicke JF (1999) A noradrenergic and serotonergic hypothesis of the linkage between epilepsy and affective disorders. Crit Rev Neurobiol 13(4):317–356

    CAS  PubMed  Google Scholar 

  326. Rauch SL (2003) Neuroimaging and neurocircuitry models pertaining to the neurosurgical treatment of psychiatric disorders. Neurosurg Clin N Am 14(2):213–223, vii–viii

    Google Scholar 

  327. Hammond EJ, Uthman BM, Wilder BJ, Ben-Menachem E, Hamberger A, Hedner T et al (1992) Neurochemical effects of vagus nerve stimulation in humans. Brain Res 583(1–2):300–303

    CAS  PubMed  Google Scholar 

  328. Ben-Menachem E, Hamberger A, Hedner T, Hammond EJ, Uthman BM, Slater J et al (1995) Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Res 20(3):221–227. doi:0920121194000839 [pii]

    CAS  PubMed  Google Scholar 

  329. Roux FX, Turak B, Landre E (2008) Vagus nerve stimulation for the treatment of refractory epilepsy. Neurochirurgie 54(3):332–339. doi:10.1016/j.neuchi.2008.02.048 S0028-3770(08)00092-1 [pii]

    PubMed  Google Scholar 

  330. Rush AJ, George MS, Sackeim HA, Marangell LB, Husain MM, Giller C et al (2000) Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study. Biol Psychiatry 47(4):276–286. S0006-3223(99)00304-2 [pii]

    CAS  PubMed  Google Scholar 

  331. George MS, Sackeim HA, Rush AJ, Marangell LB, Nahas Z, Husain MM et al (2000) Vagus nerve stimulation: a new tool for brain research and therapy. Biol Psychiatry 47(4):287–295. S0006-3223(99)00308-X [pii]

    CAS  PubMed  Google Scholar 

  332. Sackeim HA, Rush AJ, George MS, Marangell LB, Husain MM, Nahas Z et al (2001) Vagus nerve stimulation (VNS) for treatment-resistant depression: efficacy, side effects, and predictors of outcome. Neuropsychopharmacology 25(5):713–728. doi:10.1016/S0893-133X(01)00271-8 S0893133X01002718 [pii]

    CAS  PubMed  Google Scholar 

  333. Shuchman M (2007) Approving the vagus-nerve stimulator for depression. N Engl J Med 356(16):1604–1607. doi:10.1056/NEJMp078035 356/16/1604 [pii]

    CAS  PubMed  Google Scholar 

  334. Rush AJ, Marangell LB, Sackeim HA, George MS, Brannan SK, Davis SM et al (2005) Vagus nerve stimulation for treatment-resistant depression: a randomized, controlled acute phase trial. Biol Psychiatry 58(5):347–354. doi:10.1016/j.biopsych.2005.05.025 S0006-3223(05)00620-7 [pii]

    PubMed  Google Scholar 

  335. Nahas Z, Marangell LB, Husain MM, Rush AJ, Sackeim HA, Lisanby SH et al (2005) Two-year outcome of vagus nerve stimulation (VNS) for treatment of major depressive episodes. J Clin Psychiatry 66(9):1097–1104

    PubMed  Google Scholar 

  336. Schlaepfer TE, Frick C, Zobel A, Maier W, Heuser I, Bajbouj M et al (2008) Vagus nerve stimulation for depression: efficacy and safety in a European study. Psychol Med 38(5):651–661. doi:10.1017/S0033291707001924 S0033291707001924 [pii]

    CAS  PubMed  Google Scholar 

  337. Cristancho P, Cristancho MA, Baltuch GH, Thase ME, O’Reardon JP (2011) Effectiveness and safety of vagus nerve stimulation for severe treatment-resistant major depression in clinical practice after FDA approval: outcomes at 1 year. J Clin Psychiatry. doi:10.4088/JCP.09m05888blu

    PubMed  Google Scholar 

  338. Schatzberg AF, Kraemer HC (2000) Use of placebo control groups in evaluating efficacy of treatment of unipolar major depression. Biol Psychiatry 47(8):736–744. doi:S0006-3223(00)00846-5 [pii]

    CAS  PubMed  Google Scholar 

  339. George MS, Rush AJ, Marangell LB, Sackeim HA, Brannan SK, Davis SM et al (2005) A one-year comparison of vagus nerve stimulation with treatment as usual for treatment-resistant depression. Biol Psychiatry 58(5):364–373. doi:10.1016/j.biopsych.2005.07.028 S0006-3223(05)00917-0 [pii]

    PubMed  Google Scholar 

  340. Morris GL 3rd, Mueller WM (1999) Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy. The Vagus Nerve Stimulation Study Group E01-E05. Neurology 53(8):1731–1735

    PubMed  Google Scholar 

  341. Rychlicki F, Zamponi N, Trignani R, Ricciuti RA, Iacoangeli M, Scerrati M (2006) Vagus nerve stimulation: clinical experience in drug-resistant pediatric epileptic patients. Seizure 15(7):483–490. doi:10.1016/j.seizure.2006.06.001

    PubMed  Google Scholar 

  342. Khurana DS, Reumann M, Hobdell EF, Neff S, Valencia I, Legido A et al (2007) Vagus nerve stimulation in children with refractory epilepsy: unusual complications and relationship to sleep-disordered breathing. Childs Nerv Syst 23(11):1309–1312. doi:10.1007/s00381-007-0404-8

    PubMed  Google Scholar 

  343. Sackeim HA, Keilp JG, Rush AJ, George MS, Marangell LB, Dormer JS et al (2001) The effects of vagus nerve stimulation on cognitive performance in patients with treatment-resistant depression. Neuropsychiatry Neuropsychol Behav Neurol 14(1):53–62

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Lévêque .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lévêque, M. (2014). Psychosurgical Procedures. In: Psychosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-01144-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01144-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-01143-1

  • Online ISBN: 978-3-319-01144-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics