Skip to main content

Abstract

The inventory routing problem (IRP) is a major concern in operation management of a supply chain because it integrates transportation activities with inventory management. Such problems are usually tackled by independently solving the underlying inventory and vehicle routing sub-problems. The present study introduces an ant-based solution framework by modeling the IRP problem as a vehicle routing task. In this context, a mixed-integer mathematical model for the IRP is developed, where a fleet of capacitated homogeneous vehicles transport different products from multiple suppliers to a retailer to meet the demand for each period over a finite planning horizon. In our model, shortages are allowed while unsatisfied demand is backlogged and can be met in future periods. The mathematical model is used to find the best compromise among transportation, holding, and backlogging costs. The corresponding vehicle routing problem is solved using an ant-based optimization algorithm. Preliminary results on randomly generated test problems are reported and assessed with respect to the optimal solutions found by established linear solvers such as CPLEX.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdelmaguid, T.F., Dessouky, M.M.: A genetic algorithm approach to the integrated inventory–distribution problem. International Journal of Production Research 44, 4445–4464 (2006)

    Article  MATH  Google Scholar 

  2. Abdelmaguid, T.F., Dessouky, M.M., Ordonez, F.: Heuristic approaches for the inventory–routing problem with backlogging. Computers and Industrial Engineering 56, 1519–1534 (2009)

    Article  Google Scholar 

  3. Andersson, H., Hoff, A., Christiansen, M., Hasle, G., Lokketangen, A.: Industrial aspects and literature survey: Combined inventory management and routing. Computers & Operations Research 37, 1515–1536 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  5. Bonabeau, E., Dorigo, M., Théraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (1999)

    MATH  Google Scholar 

  6. Campbell, A.M., Clarke, L., Kleywegt, A.J., Savelsbergh, M.W.P.: The inventory routing problem. In: Crainic, T., Laporte, G. (eds.) Fleet Management and Logistics, pp. 95–113. Kluwer Academic Publishers, Boston (1998)

    Chapter  Google Scholar 

  7. Campbell, A.M., Savelsbergh, M.W.P.: A decomposition approach for the inventory–routing problem. Transportation Science 38(4), 488–502 (2004)

    Article  Google Scholar 

  8. Chan, L., Federgruen, A., Simchi-Levi, D.: Probabilistic analyses and practical algorithms for inventory–routing models. Operations Research 46(1), 96–106 (1998)

    Article  MATH  Google Scholar 

  9. Chien, T.W., Balakrishnan, A., Wong, R.T.: An integrated inventory allocation and vehicle routing problem. Transport Science 23, 67–76 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dorigo, M., Di Caro, G.: The ant colony optimization meta–heuristic. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 11–32. McGraw-Hill (1999)

    Google Scholar 

  11. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation 1(1), 53–66 (1997)

    Article  Google Scholar 

  12. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)

    Google Scholar 

  13. Federgruen, A., Zipkin, P.: A combined vehicle routing and inventory allocation problem. Operations Research 32(5), 1019–1036 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hvattum, L.M., Lokketangen, A.: Using scenario trees and progressive hedging for stochastic inventory routing problems. Journal of Heuristics 15, 527–557 (2009)

    Article  MATH  Google Scholar 

  15. Lee, C.-H., Bozer, Y.A., White III, C.C.: A heuristic approach and properties of optimal solutions to the dynamic inventory routing problem. Working Paper (2003)

    Google Scholar 

  16. Moin, N.H., Salhi, S.: Inventory routing problems: a logistical overview. Journal of the Operational Research Society 58, 1185–1194 (2007)

    Article  MATH  Google Scholar 

  17. Moin, N.H., Salhi, S., Aziz, N.A.B.: An efficient hybrid genetic algorithm for the multi–product multi–period inventory routing problem. International Journal of Production Economics 133, 334–343 (2011)

    Article  Google Scholar 

  18. Powell, W.B.: Approximate Dynamic Programming: Solving the Curses of Dimensionality. Wiley (2007)

    Google Scholar 

  19. Stützle, T., Hoos, H.H.: Max min ant system. Future Generation Computer Systems 16, 889–914 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios A. Tatsis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Tatsis, V.A., Parsopoulos, K.E., Skouri, K., Konstantaras, I. (2013). An Ant-Based Optimization Approach for Inventory Routing. In: Emmerich, M., et al. EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV. Advances in Intelligent Systems and Computing, vol 227. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01128-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01128-8_8

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-01127-1

  • Online ISBN: 978-3-319-01128-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics