Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 227))

Abstract

A robust multi-fidelity optimization method for micro Mars entry probe design is presented in this paper. In the robust design, aerodynamic and atmospheric model are assumed to be affected by epistemic uncertainties (partial or complete lack of knowledge). Evidence Theory is employed to quantify the uncertainties, and formulate the robust design into a multi-objective optimization problem. The optimization objectives are set to minimize interior temperature of Thermal Protection Systems (TPS), while maximize its belief value under uncertainty. A population based Multi-objective Estimation of Distribution Algorithm (MOEDA) is designed for searching robust Pareto front. In this algorithm, affinitive propagation clustering method divides adaptively the population into clusters. In each cluster, local Principal Component Analysis (PCA) is adopted for estimation of distribution, and reproducing individuals. Variable-fidelity aerodynamic model management is integrated into the robust optimizations. The fidelity management model uses analytical aerodynamic model first to initialize the optimization searching direction. With the development of the optimization, more data from high-accuracy model (CFD) are put into aerodynamic database. Artificial Neural Network (ANN) based surrogate model is used for reducing the computational cost. Finally, an application of the proposed optimization strategy for a micro probe with diameter no more than 0.8 meter is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saleh, J.H., Mark, G., Jordan, N.C.: Flexibility: a multi-disciplinary literature review and a research agenda for designing flexible engineering systems. Journal of Engineering Design 20(3), 307–323 (2009)

    Article  Google Scholar 

  2. Ravanbakhsh, A., Mortazavi, M., Roshanian, J.: Multidisciplinary design optimization approach to conceptual design of a leo earth observation microsatellite. In: Proceeding of AIAA SpaceOps 2008 Conference (2008)

    Google Scholar 

  3. Balesdent, M., Bérend, N., Dépincé, P.: Stagewise multidisciplinary design optimization formulation for optimal design of expendable launch vehicles. Journal of Spacecraft and Rockets 49(4), 720–730 (2012)

    Article  Google Scholar 

  4. Roshanian, J., Jodei, J., Mirshams, M., Ebrahimi, R., Mirzaee, M.: Multi-level of fidelity multi-disciplinary design optimization of small, solid-propellant launch vehicles. Transactions of the Japan Society for Aeronautical and Space Sciences 53(180), 73–83 (2010)

    Article  Google Scholar 

  5. Huang, C.H., Galuski, J., Bloebaum, C.L.: Multi-objective pareto concurrent subspace optimization for multidisciplinary design. AIAA Journal 45(8), 1894–1906 (2007)

    Article  Google Scholar 

  6. Dufresne, S., Johnson, C., Mavris, D.N.: Variable fidelity conceptual design environment for revolutionary unmanned aerial vehicles. Journal of Aircraft 45(4), 1405–1418 (2008)

    Article  Google Scholar 

  7. Nguyen, N.V., Choi, S.M., Kim, W.S., Lee, J.W., Kim, S., Neufeld, D., Byun, Y.H.: Multidisciplinary unmanned combat air vehicle system design using multi-fidelity model. Aerospace Science and Technology (2012)

    Google Scholar 

  8. Mueller, J.B., Larsson, R.: Collision avoidance maneuver planning with robust optimization. In: International ESA Conference on Guidance, Navigation and Control Systems, Tralee, County Kerry, Ireland (2008)

    Google Scholar 

  9. Lantoine, G., Russell, R.P.: A hybrid differential dynamic programming algorithm for robust low-thrust optimization. In: AAS/AIAA Astrodynamics Specialist Conference and Exhibit (2008)

    Google Scholar 

  10. Vasile, M.: Robust mission design through evidence theory and multiagent collaborative search. Annals of the New York Academy of Sciences 1065(1), 152–173 (2005)

    Article  Google Scholar 

  11. Croisard, N., Vasile, M., Kemble, S., Radice, G.: Preliminary space mission design under uncertainty. Acta Astronautica 66(5), 654–664 (2010)

    Article  Google Scholar 

  12. Agarwal, H., Renaud, J.E., Preston, E.L., Padmanabhan, D.: Uncertainty quantification using evidence theory in multidisciplinary design optimization. Reliability Engineering & System Safety 85(1), 281–294 (2004)

    Article  Google Scholar 

  13. Roncoli, R.B., Ludwinski, J.M.: Mission design overview for the mars exploration rover mission. In: 2002 Astrodynamics Specialist Conference (2002)

    Google Scholar 

  14. Anderson, J.D.: Hypersonic and high temperature gas dynamics. Aiaa (2000)

    Google Scholar 

  15. Mitcheltree, R., DiFulvio, M., Horvath, T., Braun, R.: Aerothermal heating predictions for mars microprobe. AIAA Paper (98-0170) (1998)

    Google Scholar 

  16. Amar, A.J., Blackwell, B.F., Edwards, J.R.: One-dimensional ablation using a full newton’s method and finite control volume procedure. Journal of Thermophysics and Heat Transfer 22(1), 71–82 (2008)

    Article  Google Scholar 

  17. Hankey, W.L.: Re-entry aerodynamics. Aiaa (1988)

    Google Scholar 

  18. Hartleib, G.: Tpsx materials properties database. NASA, http://tpsx.arc.nasa.gov

  19. Oberkampf, W., Helton, J.C.: Investigation of evidence theory for engineering applications. In: Non-Deterministic Approaches Forum, 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2002)

    Google Scholar 

  20. Limbourg, P.: Multi-objective optimization of problems with epistemic uncertainty. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 413–427. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Zhang, Q., Zhou, A., Jin, Y.: Rm-meda: A regularity model-based multiobjective estimation of distribution algorithm. IEEE Transactions on Evolutionary Computation 12(1), 41–63 (2008)

    Article  Google Scholar 

  22. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  24. Vasile, M., Minisci, E., Wijnands, Q.: Approximated computation of belief functions for robust design optimization. arXiv preprint arXiv:1207.3442 (2012)

    Google Scholar 

  25. Cheng, Q.S., Bandler, J.W., Koziel, S.: Combining coarse and fine models for optimal design. IEEE Microwave Magazine 9(1), 79–88 (2008)

    Article  Google Scholar 

  26. Koziel, S., Ogurtsov, S.: Robust multi-fidelity simulation-driven design optimization of microwave structures. In: 2010 IEEE MTT-S International Microwave Symposium Digest (MTT), pp. 201–204. IEEE (2010)

    Google Scholar 

  27. Desai, P.N., Knocke, P.C.: Mars exploration rovers entry, descent, and landing trajectory analysis. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, pp. 16–19 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Hou, L., Cai, Y., Zhang, R., Li, J. (2013). Evidence Theory Based Multidisciplinary Robust Optimization for Micro Mars Entry Probe Design. In: Emmerich, M., et al. EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV. Advances in Intelligent Systems and Computing, vol 227. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01128-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01128-8_20

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-01127-1

  • Online ISBN: 978-3-319-01128-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics