Skip to main content

Abstract

System architecture design using multi-criteria optimization is demonstrated using a case study of an aero engine health management (EHM) system. A design process for optimal deployment of EHM system functional operations over physical architecture component locations, e.g., on-engine, on-aircraft and on-ground, is described. The EHM system architecture design needs to be optimized with respect to many qualitative criteria in terms of operational attributes within the constraints of resource limitations. In this paper the system architecture design problem is formulated as a multi-criteria optimization problem. Considering the large discrete search space of decision variables and many-objective functions and constraints, an evolutionary multi-objective genetic algorithm along with a progressive preference articulation technique, is used for solving the optimization problem. The optimization algorithm found a family of Pareto solutions which provided valuable insight into design trade-offs. Using the progressive preference articulation technique, the optimization search can be focused for the industrial decision maker on to a region of interest in the objective space. Performance of the proposed method is evaluated using various test metrics. Using this approach it was possible to identify the most significant design constraints (“hot spots”) and the opportunities afforded by either the relaxation or the tightening of these constraints, along with their performance implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adra, S.F., Griffin, I., Fleming, P.J.: A comparative study of progressive preference articulation techniques for multiobjective optimisation. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 908–921. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  2. Armstrong, M., de Tenorio, C., Garcia, E., Mavris, D.: Function based architecture design space definition and exploration. In: 26th International Congress of Aeronautical Sciences

    Google Scholar 

  3. Branke, J., Deb, K.: Integrating user preferences into evolutionary multi-objective optimization. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation. STUDFUZZ, vol. 167, pp. 461–478. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Crawley, E., de Weck, O., Eppinger, S., Magee, C., Moses, J., Seering, W., Schindall, J., Wallace, D., Whitney, D.: The influence of architecture in engineering systems. Engineering Systems Monograph (2004)

    Google Scholar 

  5. Cvetkovic, D., Parmee, I.: Preferences and their application in evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation 6(1), 42–57 (2002)

    Article  Google Scholar 

  6. Deb, K.: Multi-objective optimization using evolutionary algorithms, vol. 16. John Wiley & Sons, Hoboken (2001)

    Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  8. Fleming, P.J., Purshouse, R.C., Lygoe, R.J.: Many-objective optimization: An engineering design perspective. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 14–32. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Fonseca, C., Fleming, P.: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In: Proceedings of the Fifth International Conference on Genetic Algorithms, San Mateo, California, vol. 1, pp. 416–423 (1993)

    Google Scholar 

  10. Fonseca, C., Fleming, P.: Multiobjective Genetic Algorithms Made Easy: Selection Sharing and Mating Restriction. In: First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, pp. 45–52. IET (1995)

    Google Scholar 

  11. Fonseca, C., Fleming, P.: Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms. I. A Unified Formulation. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 28(1), 26–37 (1998)

    Article  Google Scholar 

  12. Goldberg, D.: Genetic algorithms in search, optimization, and machine learning (1989)

    Google Scholar 

  13. Gries, M.: Methods for evaluating and covering the design space during early design development. Integration, the VLSI Journal 38(2), 131–183 (2004)

    Google Scholar 

  14. Ishibuchi, H., Tsukamoto, N., Nojima, Y.: Evolutionary Many-Objective Optimization: A Short Review. In: IEEE Congress on Evolutionary Computation, pp. 2419–2426 (June 2008)

    Google Scholar 

  15. Martens, A., Koziolek, H., Becker, S., Reussner, R.: Automatically improve software architecture models for performance, reliability, and cost using evolutionary algorithms. In: Proceedings of the First Joint WOSP/SIPEW International Conference on Performance Engineering, pp. 105–116. ACM (2010)

    Google Scholar 

  16. Pimentel, A., Erbas, C., Polstra, S.: A systematic approach to exploring embedded system architectures at multiple abstraction levels. IEEE Transactions on Computers 55(2), 99–112 (2006)

    Article  Google Scholar 

  17. Purshouse, R., Fleming, P.: On the Evolutionary Optimization of Many Conflicting Objectives. IEEE Transactions on Evolutionary Computation 11(6), 770–784 (2007)

    Article  Google Scholar 

  18. Selva, D., Crawley, E.: Integrated assessment of packaging architectures in earth observing programs. In: IEEE Aerospace Conference, pp. 1–17. IEEE (2010)

    Google Scholar 

  19. Tanner, G., Crawford, J.: An integrated engine health monitoring system for gas turbine aero-engines. IEE Seminar on Aircraft Airborne Condition Monitoring 2003(10203), 5 (2003)

    Article  Google Scholar 

  20. Thompson, H., Chipperfield, A., Fleming, P., Legge, C.: Distributed aero-engine control systems architecture selection using multi-objective optimisation. Control Engineering Practice 7(5), 655–664 (1999)

    Article  Google Scholar 

  21. Veldhuizen, D.A.V.: Multiobjective evolutionary algorithms: Classifications, analyses, and new innovations. Tech. rep., Air Force Institute of Technology (1999)

    Google Scholar 

  22. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Tech. Rep. 103, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Zurich, Switzerland (2001)

    Google Scholar 

  23. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kudikala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Kudikala, R., Mills, A.R., Fleming, P.J., Tanner, G.F., Holt, J.E. (2013). Real World System Architecture Design Using Multi-criteria Optimization: A Case Study. In: Emmerich, M., et al. EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV. Advances in Intelligent Systems and Computing, vol 227. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01128-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01128-8_16

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-01127-1

  • Online ISBN: 978-3-319-01128-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics