Skip to main content

A Benchmark on the Interaction of Basic Variation Operators in Multi-objective Peptide Design Evaluated by a Three Dimensional Diversity Metric and a Minimized Hypervolume

  • Conference paper
EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 227))

Abstract

Peptides play a key role in the development of drug candidates and diagnostic interventions. The design of peptides is cost-intensive and difficult in general for several well-known reasons. Multi-objective evolutionary algorithms (MOEAs) introduce adequate in silico methods for finding optimal peptide sequences which optimize several molecular properties. A mutation-specific fast non-dominated sorting GA (termed MSNSGA-II) is especially designed for this purpose.

In addition, an advanced study is conducted in this paper on the performance of MSNSGA-II when driven by further mutation and recombination operators. These operators are application-specific developments or adaptions. The fundamental idea is to gain an insight in the interaction of these components with regard to an improvement of the convergence behavior and diversity within the solution set according to the main challenge of a low number of generations. The underlying application problem is a three-dimensional minimization problem and satisfies the requirements in biochemical optimization: the objective functions have to determine clues for molecular features which - as a whole- have to be as generic as possible. The fitness functions are provided by the BioJava library. Further, the molecular search space is examined by a landscape analysis. An overview of the fitness functions in the molecular landscapes is given and correlation analysis is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vainio, M.J., Johnson, M.S.: Generating conformer ensembles using a multiobjective genetic algorithm. J. Chem. Inf. Model. 47(6), 2462–2474 (2007)

    Article  Google Scholar 

  2. Nicolaou, C.A., Brown, N., Pattichis, C.S.: Molecular optimization using computational multi-objective methods. Drug Discovery & Development 10(3), 316–324 (2007)

    Google Scholar 

  3. Knapp, B., Gicziv, V., Ribarics, R.: PeptX: Using genetic algorithms to optimize peptides for MHC binding. BMC Bioinformatics 12, 241 (2011)

    Article  Google Scholar 

  4. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. J. Evol. Comput. 2(3), 221–248 (1994)

    Article  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Zitzler, E., Thiele, L.: An evolutionary algorithm for multiobjective optimization: The strength Pareto approach. Technical report 43, Computer engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology, ETH (1999)

    Google Scholar 

  7. Kötzinger, T., Sudholt, D.: How crossover helps in Pseudo-Boolean Optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference GECCO, pp. 989–996 (2011)

    Google Scholar 

  8. Sato, H., Aquire, H.: Improved S-CDAS using Crossover Controlling the Number of Crossed Genes for Many-Objective Optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference GECCO, pp. 753–760 (2011)

    Google Scholar 

  9. Rosenthal, S., El-Sourani, N., Borschbach, M.: Introduction of a Mutation Specific Fast Non-dominated Sorting GA Evolved for Biochemical Optimization. In: Bui, L.T., Ong, Y.S., Hoai, N.X., Ishibuchi, H., Suganthan, P.N. (eds.) SEAL 2012. LNCS, vol. 7673, pp. 158–167. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Bäck, T., Schütz, M.: Intelligent mutation rate control in canonical genetic algorithm. In: Proc. of the International Symposium on Methodology for Intelligent Systems, pp. 158–167 (1996)

    Google Scholar 

  11. Deb, K., Anand, A., Joshi, D.: A computationally Efficient Evolutionary Algorithm for Real Parameter Optimization, KanGAL report: 2002003

    Google Scholar 

  12. Deb, K., Joshi, D., Anand, A.: Real-coded evolutionary algorithms with parent-centric recombination. KanGAL Report No. 2001003 (2001)

    Google Scholar 

  13. Ono, I., Kobayashi, S.: A real-coded genetic algorithm for functional optimization using unimodal normal distribution crossover. In: Proceedings of th 7th International Conference on Genetic Algorithms (ICGA-7), pp. 246–253 (1997)

    Google Scholar 

  14. Tsusui, S., Yamamura, M., Higuchi, T.: Multi-parent recombination with simplex crossover in real-coded genetic algorithms. In: Proceedings of the Genetic and Evolutionary Computing Conference (GECCO 1999), pp. 657–664 (1999)

    Google Scholar 

  15. Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval schemata. In: Whitley, D. (ed.) Foundation of Genetic Algorithm II, pp. 187–202 (1993)

    Google Scholar 

  16. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex System 9, 115–148 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Knapp, B., Gicziv, V., Ribarics, R.: PeptX: Using genetic algorithms to optimize peptides for MHC binding. BMC Bioinformatics 12, 241 (2011)

    Article  Google Scholar 

  18. BioJava: CookBook, release 3.0, http://www.biojava.org/wiki/BioJava

  19. Eiben, A.E., Bäck, T.: Empirical investigation of multiparent recombination operators in evolutionary strategies. Evolutionary Computation 5(3), 347–365 (1997)

    Article  Google Scholar 

  20. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48(3), 443–453 (1970)

    Article  Google Scholar 

  21. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  22. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms- a comparative case study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  23. Rosenthal, S., El-Sourani, N., Borschbach, M.: Impact of Different Recombination Methods in a Mutation-Specific MOEA for a Biochemical Application. In: Vanneschi, L., Bush, W.S., Giacobini, M. (eds.) EvoBIO 2013. LNCS, vol. 7833, pp. 188–199. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. El-Sourani, N., Borschbach, M.: Design and comparison of two evolutionary approaches for solving the rubik’s cube. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 442–451. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Borschbach, M., Grelle, C., Hauke, S.: Divide and evolve driven by human strategies. In: Deb, K., et al. (eds.) SEAL 2010. LNCS, vol. 6457, pp. 369–373. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Grosan, C., Oltean, M., Dumitrescu, P.: Performance Metrics for Multiobjective Evolutionary Algorithms. In: Proceedings of Convergence on Applied and Industrial Mathematics, Romania (2003)

    Google Scholar 

  27. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. TIK-Report 103 (2001)

    Google Scholar 

  28. Laumanns, M.: Analysis and Applications of Evolutionary Multiobjective Optimization Algorithms. PhD thesis no. 15251, Swiss Federal Institute of Technology Zurich (2003)

    Google Scholar 

  29. Coello, C.A.C.: 20 Years of Evolutionary Multi-Objective Optimization: What has been done and What remains to be done. In: Yen, G.Y., Fogel, D.B. (eds.) Computational Intelligence: Principles and Practise, pp. 73–88. IEEE Computer Society (2006)

    Google Scholar 

  30. Li, M., Zheng, J., Wu, J.: Improving NSGA-II Algorithm based in Minimum Spanning Tree. In: Li, X., et al. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 170–179. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  31. Sanchez-Faddeev, H., Emmerich, M.T.M., Verbeek, F.J., Henry, A.H., Grimshaw, S., Spaink, H.P., van Vlijmen, H.W., Bender, A.: Using Multiobjective Optimization and Energy Minimization to Design an Isoform-Selective Ligand of the 14-3-3 Protein. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part II. LNCS, vol. 7610, pp. 12–24. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  32. Emmerich, M., Beume, N., Naujoks, B.: An EMO Algorithm using the Hypervolume Measure as Selection Criterion. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  33. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective Selection based on Dominated Hypervolume. European Journal of Operation Research 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  34. Lee, B.V.Y.: Analysing Molecular Landscape Using Random Walks and Information Theory. Master Thesis, Leiden Institute for Advanced Computer Science, Leiden University (2009)

    Google Scholar 

  35. Röckendorf, N., Borschbach, M., Frey, A.: Molecular evolution of peptide ligands with custom-tailored characteristics. PLOS Computational Biology, Open Access Journal (December 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Rosenthal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Rosenthal, S., Borschbach, M. (2013). A Benchmark on the Interaction of Basic Variation Operators in Multi-objective Peptide Design Evaluated by a Three Dimensional Diversity Metric and a Minimized Hypervolume. In: Emmerich, M., et al. EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV. Advances in Intelligent Systems and Computing, vol 227. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01128-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01128-8_10

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-01127-1

  • Online ISBN: 978-3-319-01128-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics