Skip to main content

Abstract

This chapter begins with an overview of various engineered and naturally occurring porous solids and their applications in modern technologies. Different modes of confinement, such as topological, chemical, biological, and interfacial, can affect structural and kinetic aspects of the fluid phase equilibria, mechanical and viscoelastic properties, diffusion, and flow in confined spaces. Such dramatic modification of the fluid properties under confinement can be efficiently exploited in a variety of technologies, provided there are ways of controlling the internal structures and surface chemistry of the target porous material at the macroscopic, mesoscopic, microscopic, and molecular levels. SAS represents a nonintrusive technique that can provide information on the structure of porous media that is inaccessible to other methods of structural characterization. The rest of the chapterĀ is devoted to the description of SAS structural analysis of porous silicas, carbons, membranes, polymer monoliths, sedimentary rocks and other common materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sengers, J.V., Kayser, R.F., Peters, C.J., White, H.J. (eds.): Equations of State for Fluids and Fluid Mixtures. Elsevier, Amsterdam (2000)

    Google ScholarĀ 

  2. Ramanathan, M., Kilbey, S.M., Ji, Q., Hill, J.P., Ariga, K.: Materials self-assembly and fabrication in confined spaces. J. Mater. Chem. 22, 10389 (2012)

    ArticleĀ  Google ScholarĀ 

  3. Broom, D.P., Thomas, K.M.: Gas adsorption by nanoporous materials: future applications and experimental challenges. MRS Bull. 38, 412 (2013)

    ArticleĀ  Google ScholarĀ 

  4. Lu, A.H., Dai, S.: Themed issue on porous carbon materials. J. Mater. Chem. A. 1, 9326 (2013)

    ArticleĀ  Google ScholarĀ 

  5. Lee, J., Kim, J., Hyeon, T.: Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18, 2073 (2006)

    ArticleĀ  Google ScholarĀ 

  6. He, L., Melnichenko, Y.B., Gallego, N.C., Contescu, C.I., Guo, J., Bahadur, J.: Investigation of morphology and hydrogen capacity of disordered carbons. Carbon 80, 82ā€“90 (2014)

    ArticleĀ  Google ScholarĀ 

  7. Ruppert, L.F., Sakurovs, R., Blach, T.P., He, L., Melnichenko, Y.B., Mildner, D.F.R., Alcantar-Lopez, L.: A USANS/SANS study of the accessibility of pores in the barnett shale to methane and water. Energy Fuel 27, 772ā€“779 (2013)

    ArticleĀ  Google ScholarĀ 

  8. Hoinkis, E.: Small-angle scattering of neutrons and X-rays from carbons and graphites. In: Thrower, P.A. (ed.) Chemistry and Physics of Carbon. Marcel Dekker, New York (1997)

    Google ScholarĀ 

  9. Halasz, I., Liang, J.J.: In: Fitzgerald G., Govind N. (eds.) Molecular Modeling Aspects of Exploring Silica Properties. Applications of Molecular Modeling to Challenges in Clean Energy. ACS Symposium Series, vol. 1133, pp. 113ā€“134 (2013)

    Google ScholarĀ 

  10. Melnichenko, Y.B., Mayama, H., Cheng, G., Blach, T.: Monitoring phase behavior of sub- and supercritical CO2 confined in porous fractal silica with 85% porosity. Langmuir 26, 6374 (2010)

    ArticleĀ  Google ScholarĀ 

  11. Enke, D., Janowski, F., Schweiger, W.: Porous glasses in the 21st centuryā€”a short review. Micropor. Mesopor. Mater. 60, 19 (2003)

    ArticleĀ  Google ScholarĀ 

  12. Striemer, C.C., Gaborski, T.R., McGrath, J.L., Fauchet, P.M.: Charge- and size-based separation of macromolecules using ultrathin silicon membranes. Nature 445, 749 (2007)

    ArticleĀ  Google ScholarĀ 

  13. Giraldo, L.F., Lopez, B.L., Perez, L., Urrego, S., Sierra, L., Mesa, M.: Mesoporous silica applications. Macromol. Symp. 258, 129 (2007)

    ArticleĀ  Google ScholarĀ 

  14. Ferey, G., Serre, C., Devic, T., Maurin, G., Jobic, H., Llewellyn, P.L., De Weireld, G., Vimont, A., Daturi, M., Chang, J.S.: Why hybrid porous solids capture greenhouse gases? Chem. Soc. Rev. 40, 550 (2011)

    ArticleĀ  Google ScholarĀ 

  15. MacGillivray, L.R. (ed.): Metal-Organic Frameworks: Design and Application. Willey, New Jersey (2010)

    Google ScholarĀ 

  16. Jiang, J.X., Cooper, A.I.: Microporous organic polymers: design, synthesis, and function. Top. Curr. Chem. 293, 1 (2010)

    ArticleĀ  Google ScholarĀ 

  17. Xie, Y., Wang, T.-T., Liu, X.-H., Zou, K., Deng, W.-Q.: Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer. Nat. Commun. 4, 2013 (1960). doi:10.1038/ncomms2960

    Google ScholarĀ 

  18. Cao, G., Wang, Y.: Nanostructures and Nanomaterials. World Scientific, New Jersey (2011)

    BookĀ  Google ScholarĀ 

  19. Lowell, S., Shields, J.E., Thomas, M.A., Thommes, M.: Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Springer (2006)

    Google ScholarĀ 

  20. Riikonen, J., Salonen, J., Lehto, V.P.: Utilizing thermoporometry to obtain insights into nanostructured materials. J. Therm. Anal. Calorim. 105(811) (2011)

    Google ScholarĀ 

  21. Wiltzius, P., Bates, F.S., Dierker, S.B.: Structure of porous Vycor glass. Phys. Rev. A 36, 2991 (1987)

    ArticleĀ  Google ScholarĀ 

  22. Fratzl, P., Vogl, G., Klaumuzer, S.: Small-angle scattering from porous amorphous substances. J. Appl. Crystallogr. 24, 588 (1991)

    ArticleĀ  Google ScholarĀ 

  23. Cahn, J.W.: On spinodal decomposition. Acta Metall. 9, 795 (1961)

    ArticleĀ  Google ScholarĀ 

  24. Levitz, P., Ehret, G., Sinha, S.K., Drake, J.M.: Porous Vycor glassā€”the microstructure as probed by electron microscopy, direct energy-transfer, small-angle scattering, and molecular simulation. J. Chem. Phys. 95, 6151 (1991)

    ArticleĀ  Google ScholarĀ 

  25. Agamalian, M., Drake, J.M., Sinha, S., Axe, J.D.: Neutron diffraction study of the pore surface layer of Vycor glass. Phys. Rev. E 55, 3021 (1997)

    ArticleĀ  Google ScholarĀ 

  26. Kim, M.H., Glinka, C.J.: Ultra small-angle neutron scattering study of the nanometer to micrometer structure of porous Vycor. Micropor. Mesopor. Mater. 91, 305 (2006)

    ArticleĀ  Google ScholarĀ 

  27. Schaefer, D.W., Keefer, K.D.: Structure of random porous materials: silica aerogel. Phys. Rev. Lett. 56, 2199 (1986)

    ArticleĀ  Google ScholarĀ 

  28. Rojanski, D., Huppert, D., Bale, H.D., Dacai, X., Schmidt, P.W., Farin, D., Seri-Levy, A., Avnir, D.: Integrated fractal analysis of silicaā€”adsorption, electronic energy transfer, and small-angle X-ray scattering. Phys. Rev. Lett. 56, 2505 (1986)

    ArticleĀ  Google ScholarĀ 

  29. Vacher, R., Woignier, T., Pelous, J., Courtens, E.: Structure and self-similarity of silica aerogels. Phys. Rev. B 37, 6500 (1988)

    ArticleĀ  Google ScholarĀ 

  30. Wang, J., Shen, J., Zhou, B., Wu, X.: SAXS investigation of silica aerogels derived from TEOS. NanoStruct. Mater. 7, 699 (1996)

    ArticleĀ  Google ScholarĀ 

  31. Takeda, M.W., Kirihara, S., Miyamoto, Y., Sakoda, K., Honda, K.: Localization of electromagnetic waves in three-dimensional fractal cavities. Phys. Rev. Lett. 92, 093902 (2004)

    ArticleĀ  Google ScholarĀ 

  32. Onda, T., Shibuichi, S., Satoh, N., Tsujii, K.: Super-water-repellent fractal surfaces. Langmuir 12, 2125 (1996)

    ArticleĀ  Google ScholarĀ 

  33. Mayama, H., Tsujii, K.: Menger-sponge-like fractal body created by a novel template method. J. Chem. Phys. 125, 124706 (2006)

    ArticleĀ  Google ScholarĀ 

  34. Yamaguchi, D., Mayama, H., Koizumi, S., Tsujii, K., Hashimoto, T.: Investigation of self-assembled fractal porous silica over a wide range of length scales using a combined small-angle scattering method. Eur. Phys. J. B 63, 153 (2008)

    ArticleĀ  Google ScholarĀ 

  35. Hurd, A.J., Schaefer, D.W., Martin, J.E.: Surface and mass fractals in vapor-phase aggregates. Phys. Rev. A 35, 2361 (1987)

    ArticleĀ  Google ScholarĀ 

  36. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrikson, G.H., Chmelka, B.F., Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 ƅ pores. Science 279, 548 (1998)

    ArticleĀ  Google ScholarĀ 

  37. Zhao, D., Sun, J., Li, Q., Stucky, G.D.: Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater. 12, 275 (2000)

    ArticleĀ  Google ScholarĀ 

  38. Zhang, F., Yan, Y., Yang, H., Meng, Y., Yu, C., Tu, B., Zhao, D.J.: Understanding effect of wall structure on the hydrothermal stability of mesostructured silica SBA-15. Phys. Chem. B 109, 8723 (2005)

    ArticleĀ  Google ScholarĀ 

  39. Guo, W.P., Li, X., Zhao, X.S.: Understanding the hydrothermal stability of large-pore periodic mesoporous organosilicas and pure silicas. Micropor. Mesopor. Mater. 93, 285 (2006)

    ArticleĀ  Google ScholarĀ 

  40. Pollock, R.A., Walsh, B.R., Fry, J., Ghampson, I.T., Melnichenko, Y.B., Kaizer, H., Pynn, R., DeSisto, W.J., Clayton, M.C., Frederick, B.G.: Size and spational distribution of micropores in SBA-15 using CM-SANS. Chem. Mater. 23, 3828 (2011)

    ArticleĀ  Google ScholarĀ 

  41. Pollock, R.A., Gor, G., Walsh, B.R., Fry, J., Ghampson, I.T., Melnichenko, Y.B., Kaiser, H., Pynn, R., DeSisto, W.J., Wheeler, M.C., Frederick, B.G.: The role of liquid vs vapor water in the hydrothermal degradation of SBA-15. J. Phys. Chem. C 116, 22802 (2012)

    ArticleĀ  Google ScholarĀ 

  42. Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.: Ordered mesoporous molecular sievs synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992)

    ArticleĀ  Google ScholarĀ 

  43. Gouze, B., Cambedouzou, J., Parres-Maynadie, S., Rebiscoul, D.: How hexagonal mesoporous silica evolves in water on short and long term: role of pore size and silica wall porosity. Micropor. Mesopor. Mater. 183, 168 (2014)

    ArticleĀ  Google ScholarĀ 

  44. Beguin, F., Frackowiak, E.: Carbons for Electrochemical Energy Storage and Conversion Systems. CRC Press, Boca Raton (2009)

    BookĀ  Google ScholarĀ 

  45. Gogotsi, Y., Nikitin, A., Ye, H., Zhou, W., Fischer, J.E., Yi, B., Foley, H.C., Barsoum, M.W.: Nanoporous carbide-derived carbon with tunable pore size. Nat. Mater. 2, 591 (2003)

    ArticleĀ  Google ScholarĀ 

  46. He, L., Chathoth, S.M., Melnichenko, Y.B., Presser, V., McDonough, J., Gogotsi, Y.: Small-angle neutron scattering characterization of the structure of nanoporous carbons for energy-related applications. Micropor. Mesopor. Mater. 149(46) (2012)

    Google ScholarĀ 

  47. Kalliat, M., Kwak, Y., Schmidt, C.W.: Small-angle X-Ray Investigation of the Porosity in Coals (volume 169 of ACS Symposium series New Approaches in Coal Chemistry). American Chemical Society, Pittsburgh (1981)

    Google ScholarĀ 

  48. Gibaud, A., Xue, J.S., Dahn, J.: A small angle X-ray scattering study of carbons made from pyrolyzed sugar. Carbon 34, 499 (1996)

    ArticleĀ  Google ScholarĀ 

  49. Kirste, V.R., Pord, G.: Rontgenkleinwinkelstreuung an kolloiden systemenā€”asymptotisches verhalten ger streukurven. Kolloid-Zeitschrift Zeitschrift fur Polymere 184, 1 (1962)

    ArticleĀ  Google ScholarĀ 

  50. Auvray, L., Auroy, P.: Scattering at interfaces: variations on Porodā€™s Law. In: Lindner, P., Zemb, T. (eds.) Neutron, X-Ray and Light Scattering: Introduction to an Investigative Tool for Colloidal and Polymeric Systems. North-Holland, Amsterdam (1991)

    Google ScholarĀ 

  51. Laudisio, G., Dash, R.K., Singer, J.P., Yushin, G., Gogotsi, Y., Fischer, J.E.: Carbide-derived carbons: a comparative study of porosity based on small-angle scattering and adsorption isotherms. Langmuir 22, 8945 (2006)

    ArticleĀ  Google ScholarĀ 

  52. Dash, R., Chmiola, J., Yushin, G., Gogotsi, Y., Laudisio, G., Singer, J., Fischer, J., Kucheyev, S.: Titanium carbide derived nanoporous carbon for energy-related applications. Carbon 44, 2489 (2006)

    ArticleĀ  Google ScholarĀ 

  53. Dris, V.A., Tchoubar, C.: X-Ray Diffraction by Disordered Lamellar Structures. Springer, Berlin (1990)

    BookĀ  Google ScholarĀ 

  54. Jenkis, G.M., Kawamura, K.: Polymeric Carbonsā€”Carbon Fiber, Glass and Char. Cambridge University Press, Cambridge (1976)

    Google ScholarĀ 

  55. Braun, A., Bartsch, M., Schnyder, B., Kotz, R., Haas, O., Haubold, H.-G., Goerigk, G.: X-ray scattering and adsorption studies of thermally oxidized glassy carbon. J. Non-Cryst. Solids 260, 1 (1999)

    ArticleĀ  Google ScholarĀ 

  56. Braun, A., Seifert, S., Ilavsky, J.: Highly porous activated glassy carbon film sandwitch structure for electrochemical energy storage in ultracapacitor applications: Study of the porous film structure and gradient. J. Mater. Res. 25, 1532 (2010)

    ArticleĀ  Google ScholarĀ 

  57. Ilavsky, J., Jemian, P.R.: Irena: tool suite for modeling and analysis of small-angle scattering. J. Appl. Crystallogr. 42, 347 (2009)

    ArticleĀ  Google ScholarĀ 

  58. Pekala, R.W.: Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci. 24, 3221 (1989)

    ArticleĀ  Google ScholarĀ 

  59. Chathoth, S.M., He, L., Mamontov, E., Melnichenko, Y.B.: Effect of carbon dioxide and nitrogen on the diffusivity of methane confined in nano-porous carbon aerogel. Micropor. Mesopor. Mater. 148, 101 (2012)

    ArticleĀ  Google ScholarĀ 

  60. Hinde, A.L.: PRINSASā€”a Windows-based computer program for the processing and interpretation of small-angle scattering data tailored to the analysis of sedimentary rocks. J. Appl. Crystallogr. 37, 1020 (2004)

    ArticleĀ  Google ScholarĀ 

  61. Melnichenko, Y.B., Wignall, G.D., Cole, D.R., Frielinghaus, H.: Adsorption of supercritical CO2 in aerogels as studied by small-angle neutron scattering and neutron transmission techniques. J. Chem. Phys. 124, 204711 (2006)

    ArticleĀ  Google ScholarĀ 

  62. Cohaut, N., Thery, A., Guet, J.M., Rouzand, J.N., Kocon, L.: The porous network in carbon aerogels investigated by small angle neutron scattering. Carbon 45, 1185 (2007)

    ArticleĀ  Google ScholarĀ 

  63. Sousa, C.T., Leitao, D.C., Proenca, M.P., Ventura, J., Pereira, A.M., Araujo, J.P.: Nanoporous alumina as templates for multifunctional applications. Appl. PHys. Rev. 1, 031102 (2014)

    ArticleĀ  Google ScholarĀ 

  64. Marchal, D., Bourdillon, C., Deme, B.: Small-angle neutron scattering by highly oriented hybrid bilayer membranes confined in anisotropic porous alumina. Langmuir 17, 8313 (2001)

    ArticleĀ  Google ScholarĀ 

  65. Deme, B., Marchal, D.: Polymer-cushioned lipid bilayers in porous alumina. Eur. Biophys. J. 34, 170 (2005)

    ArticleĀ  Google ScholarĀ 

  66. Benfield, R.E., Grandjean, D., Dore, J.C., Esfahanian, H., Wu, Z., Kroll, M., Geerkens, M., Schmidt, G.: Structure of assemblies of metal nanowires in mesoporous alumina membranes studied by EXAFS, XANES, X-ray difraction, and SAXS. Faraday Discuss. 125, 327 (2004)

    ArticleĀ  Google ScholarĀ 

  67. Turkevych, I., Ryukhtin, V., Garamus, V., Kato, S., Takamasu, T., Kido, G., Kondo, M.: Studies of self-organization process in nanoporous alumina membranes by small-angle neutron scattering. Nanotechnology 23, 325606 (2012)

    ArticleĀ  Google ScholarĀ 

  68. Grigorā€™ev, S.V., Grigorā€™eva, N.A., Syromyatnikov, A.V., Napolā€™skii, K.S., Eliseev, A.A., Lukashin, A.V., Yu, D., Tretā€™yakov, D., Eckerlebe, H.: Two-dimensional spatially ordered Al2O3 systems: small-angle neutron scattering investigation. JETP Lett. 85, 449 (2007)

    ArticleĀ  Google ScholarĀ 

  69. Kainourgikas, M., Steriotis, T., Charalambopoulou, G., Strobl, M., Stubos, A.: Determination of the spatial distribution of multiple fluid phases in porous media by ultra-small-angle neutron scattering. Appl. Surf. Sci. 256, 5329 (2010)

    ArticleĀ  Google ScholarĀ 

  70. Arrua, R.D., Strumia, M.C., Alvarez Igarzabal, C.I.: Macroporous monolithic polymers: preparation and applications. Materials 2, 2429 (2009)

    ArticleĀ  Google ScholarĀ 

  71. Nischang, I.: Porous polymer monolyths: morphology, porous properties, polymer nanoscale gel structure and their impact on chromatographic performance. J. Chromatogr. A 1287, 39 (2013)

    ArticleĀ  Google ScholarĀ 

  72. Ford, K.M., Konzman, B.G., Rubinson, J.F.: A more informative approach for characterization of polymer monolithic phases: small angle neutron scattering/ultrasmall angle neutron scattering. Anal. Chem. 83, 9201 (2011)

    ArticleĀ  Google ScholarĀ 

  73. Fratzl, P.: Small-angle scattering in materials scienceā€”a short review of applications in alloys, ceramics and composite materials. J. Appl. Crystallogr. 36, 397 (2003)

    ArticleĀ  Google ScholarĀ 

  74. Allen, A.J.: Characterization of ceramics by x-ray and neutron small-angle scattering. J. Am. Ceram. Soc. 88, 1367 (2005)

    ArticleĀ  Google ScholarĀ 

  75. Cohen, M.H.: In: Johnson, D.L. (ed.) The Morphology of Porous Sedimentary Rocks. Physics and Chemistry of Porous Media. AIP Conference Proceedings No. 154, pp. 3ā€“16 (1984)

    Google ScholarĀ 

  76. Radlinski, A.P.: Small-angle neutron scattering and the microstructure of rocks. Rev. Mineral. Geochem. 63, 363 (2006)

    ArticleĀ  Google ScholarĀ 

  77. Anowitz, L.M., Cole, D.R., Rother, G., Allard, L.F., Jackson, A.J., Littrell, K.C.: Diagenetic changes in macro- to nano-scale porosity in the St. Peter sandstone: an (ultra) small angle neutron scattering and backscattering electron imaging analysis. Geochim. Cosmochim. Acta 102, 280 (2013)

    ArticleĀ  Google ScholarĀ 

  78. Radlinski, A.P., Mastalerz, M., Hinde, A.L., Hainbuchner, M., Rauch, H., Baron, M., Lin, J.S., Fan, L., Thiagarajan, P.: Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal. Int. J. Coal Geol. 59, 245 (2004)

    ArticleĀ  Google ScholarĀ 

  79. Anowitz, L.M., Lynn, G.W., Cole, D.R., Rother, G., Allard, L.F., Hamilton, W.A., Porcar, L., Kim, M.H.: A new approach to quantification of metamorphism using ultra-small and small angle neutron scattering. Geochim. Cosmochim. Acta 73, 7303 (2009)

    ArticleĀ  Google ScholarĀ 

  80. Wang, H.W., Anovitz, L.M., Burg, A., Cole, D.R., Allard, L.F., Jackson, A.J., Stack, A.G., Rother, G.: Multi-scale characterization of pore evolution in a combustion metamorphic complex, Hatrurim basin, Israel: combining (ultra) small-angle neutron scattering and image analysis. Geochim. Cosmochim. Acta 121, 339 (2013)

    ArticleĀ  Google ScholarĀ 

  81. Radlinski, A.P., Ioannidis, M.A., Hinde, A.L., Hainbucher, M., Baron, M., Rauch, H., Kline, S.R.: Angstrom-to-milimiter characterization of sedimentary rock microstructure. J. Colloid Interface Sci. 274, 607ā€“612 (2004)

    ArticleĀ  Google ScholarĀ 

  82. Berryman, J.G.: Measurement of spatioal correlation functions using image processing techniques. J. Appl. Phys. 57, 2374ā€“2384 (1985)

    ArticleĀ  Google ScholarĀ 

  83. Berryman, J.G., Blair, S.C.: Use of digital image analysis to estimate fluid permeability of porous materials: application of two-point correlation functions. J. Appl. Phys. 60, 1930ā€“1938 (1986)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Melnichenko, Y.B. (2016). Structural Characterization of Porous Materials Using SAS. In: Small-Angle Scattering from Confined and Interfacial Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-01104-2_7

Download citation

Publish with us

Policies and ethics