Skip to main content

Fundamentals of Data Analysis

  • Chapter
  • 1026 Accesses

Abstract

The aim of SAS experiments is to extract volume-averaged information on the spatial distribution of scattering length density (neutrons) or the electron density (x-rays) in the sample from the measured differential cross section as a function of scattering vector. Correlation functions can be calculated directly from the SAS data and deliver information on the sample structure. This chapter begins with a brief description of the mathematical form and geometrical meaning of correlation functions, which enter theory of scattering from the two-phase random systems. Asymptotic behavior of scattering in the limit of low and high values of the scattering vector is considered, together with the unified scattering function, which bridges the Guinier and Porod scattering regimes. The rest of the chapter deals with the scattering theory from fractal systems and possible extension of the theory of scattering from the two-phase to multiphase systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Debye, P., Bueche, A.M.: Scattering by an inhomogeneous fluid. J. Appl. Phys. 20, 518 (1949)

    Article  Google Scholar 

  2. Feigin, L.A., Svergun, D.I.: Structure Analysis by Small-Angle X-Ray and Neutron Scattering. Plenum, New York, London (1987)

    Book  Google Scholar 

  3. Bale, H.D., Schmidt, P.W.: Small-angle X-ray scattering investigation of submicroscopic porosity with fractal properties. Phys. Rev. Lett. 53, 596 (1984)

    Article  Google Scholar 

  4. Kjems, J.K., Schofield, P.: Neutron and X-ray studies of interfaces. In: Pynn, R., Skjeltorp, A. (eds.) Scaling Phenomena in Disordered Systems (NATO ASI Series B: Physics). Springer, New Year (1991)

    Google Scholar 

  5. Wong, P.Z., Bray, A.J.: Fractal dimension of rough surfaces in the solid-on-solid model. Phys. Rev. Lett. 59, 1057 (1987)

    Article  Google Scholar 

  6. Kjems, J.K., Freltoft, T.: Neutron and X-ray scattering from aggregates. In: Pynn, R., Skjeltorp, A. (eds.) Scaling Phenomena in Disordered Systems (NATO ASI Series B: Physics). Springer, New York (1991)

    Google Scholar 

  7. Teixeira, J.: Experimental methods for studying fractal aggregates. In: Stanley, H.E., Ostrowski, N. (eds.) On the Growth and Form: Fractal and Non-fractal Patterns in Physics (NATO Science series E: Applied Sciences). Springer, New York (1986)

    Google Scholar 

  8. Teixeira, J.: Small-angle scattering by fractal systems. J. Appl. Crystallogr. 21, 781 (1988)

    Article  Google Scholar 

  9. Porod, G.: General theory. In: Glatter, O., Kratky, O. (eds.) Small Angle X-Ray Scattering. Academic, London (1982)

    Google Scholar 

  10. Debye, P., Anderson, H.R., Brumberger, H.: Scattering by an inhomogeneous solid. 2. The correlation function and its application. J. Appl. Phys. 28, 679 (1957)

    Article  Google Scholar 

  11. Melnichenko, Y.B., Wignall, G.D., Cole, D.R., Frielinghaus, H.: Adsorption of supercritical CO2 in aerogels as studied by small-angle neutron scattering and neutron transmission techniques. J. Chem. Phys. 124, 204711 (2006)

    Article  Google Scholar 

  12. Kirste, V.R., Pord, G.: Rontgenkleinwinkwlstreum an kolloiden systemen—asymptotisches verhalten der streukurven. Colloid Polym. Sci. 184, 1 (1962)

    Google Scholar 

  13. Auvray, L., Auroy, P.: Scattering at interfaces: variations on Porod’s Law. In: Lindner, P., Zemb, T. (eds.) Neutron, X-Ray and Light Scattering: Introduction to an Investigative Tool for Colloidal and Polymeric Systems. North-Holland, Amsterdam (1991)

    Google Scholar 

  14. Glatter, O., Kratky, O. (eds.): Small Angle X-Ray Scattering. Academic, London, New York (1982). A PDF file with this book is available at: http://physchem.kfunigraz.ac.at/sm/Software.htm

    Google Scholar 

  15. Melnichenko, Y.B., Wignall, G.D., Compton, R.N., Bakale, G.: Characterization of fullerenes and fullerene derivatives by small-angle neutron scattering and transmission measurements. J. Chem. Phys. 111, 4724 (1999)

    Article  Google Scholar 

  16. Roe, R.J.: Methods of X-Ray and Neutron Scattering in Polymer Science. Oxford University Press, New York, Oxford (2000)

    Google Scholar 

  17. Hoinkis, E.: Small-angle scattering of neutrons and X-rays from carbons and graphites. In: Thrower, P.A. (ed.) Chemistry and Physics of Carbon. Marcel Dekker, New York (1997)

    Google Scholar 

  18. Beaucage, G., Schaefer, D.W.: Structural studies of complex systems using small-angle scattering—a unified Guinier power—law approach. J. Non-Cryst. Solids 172–174, 797 (1994)

    Article  Google Scholar 

  19. Beaucage, G.: Approximations leading to a unified exponential power-law approach to small-angle scattering. J. Appl. Crystallogr. 28, 717 (1995)

    Article  Google Scholar 

  20. Beaucage, G.: Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J. Appl. Crystallogr. 29(134) (1996)

    Google Scholar 

  21. http://usaxs.xray.aps.anl.gov/staff/ilavsky/irena.html

  22. http://www.ncnr.nist.gov/programs/sans/data/red_anal.html

  23. Chathoth, S.M., He, L., Mamontov, E., Melnichenko, Y.B.: Effect of carbon dioxide and nitrogen on the diffusivity of methane confined in nano-porous carbon aerogel. Micropor. Mesopor. Mat. 148, 101 (2012)

    Article  Google Scholar 

  24. Mandelbrot, B.B.: The Fractal Geometry of Nature. Freeman, San Francisco (1983)

    Google Scholar 

  25. Avnir, D., Biham, O., Lidar, D., Malcai, O.: Is the geometry of nature fractal? Science 279, 39 (1997)

    Article  Google Scholar 

  26. Radlinski, A.P., Radlinska, E.Z., Agamalian, M., Wignall, G.D., Lindner, P., Randl, O.G.: Fractal geometry of rocks. Phys. Rev. Lett. 82, 3078 (1999)

    Article  Google Scholar 

  27. Ruppert, L.F., Sakurovs, R., Blach, T.P., He, L., Melnichenko, Y.B., Mildner, D.F.R., Alcantar-Lopez, L.: A USANS/SANS study of the accessibility of pores in the Barnett shale to methane and water. Energy Fuel 27, 772 (2013)

    Article  Google Scholar 

  28. Schaefer, D.W., Keefer, K.D.: Fractal geometry of silica condensation polymers. Phys. Rev. Lett. 53, 1383 (1984)

    Article  Google Scholar 

  29. Pfeifer, P.: Mapping a Pore Fractal. Physics News Update No. 578 (American Institute of Physics, 27 Feb 2002). Reproduced with permission. The original image may be viewed at http://www.fractal.org/Life-Science-Technology/Publications/Pore-fractal.htm

  30. Pfeifer, P., Ehrburger-Dolle, F., Rieker, T.P., Gonzalez, M.T., Hoffman, W.P., Molina-Sabio, M., Rodriguez-Reinoso, F., Schmidt, P.W., Voss, D.J.: Nearly space-filling fractal networks of carbon nanopores. Phys. Rev. Lett. 88, 115502 (2002)

    Article  Google Scholar 

  31. Freltoft, T., Kjems, J.K., Sinha, S.K.: Power-law correlations and finite size effects in silica particle aggregates studied by small-angle neutron scattering. Phys. Rev. B 33, 269 (1986)

    Article  Google Scholar 

  32. Vonk, C.G.: Investigation of non-ideal 2-phase polymer structures by small-angle X-ray scattering. J. Appl. Crystallogr. 6, 81 (1973)

    Article  Google Scholar 

  33. Ruland, W.: Small-angle scattering of 2-phase systems—determination and significance of systematic deviations from Porod law. J. Appl. Crystallogr. 4, 70 (1971)

    Article  Google Scholar 

  34. Koberstein, J.T., Morra, B., Stein, R.S.: Determination of diffuse-boundary thicknesses of polymers by small-angle X-ray scattering. J. Appl. Crystallogr. 13, 34 (1980)

    Article  Google Scholar 

  35. Schmidt, P.W., Avnir, D., Levy, D., Hohr, A., Steiner, M., Roll, A.: Small-angle X-ray scattering from the surfaces of reversed-phase silicas—power-law scattering exponents of magnitudes greater than 4. J. Chem. Phys. 94(1474) (1991)

    Google Scholar 

  36. Li, Z.H., Gong, Y.J., Wu, D., Sun, Y.H., Wang, J., Liu, Y., Dong, B.Z.: A negative deviation from Porod’s law in SAXS of organo-MSU-X. Micropor. Mesopor. Mat. 46, 75 (2001)

    Article  Google Scholar 

  37. Radlinski, A.P.: Small-angle neutron scattering and the microstructure of rocks. Rev. Miner. Geochem. 63, 363 (2006)

    Article  Google Scholar 

  38. Schmidt, P.W.: Interpretation of small-angle scattering curves proportional to a negative power of the scattering vector. J. Appl. Crystallogr. 15, 567 (1982)

    Article  Google Scholar 

  39. Hinde, A.L.: PRINSAS—a windows-based computer program for the processing and interpretation of small-angle scattering data tailored to the analysis of sedimentary rocks. J. Appl. Crystallogr. 37, 1020 (2004)

    Article  Google Scholar 

  40. Radlinski, A.P., Ioannidis, M.A., Hinde, A.L., Hainbuchner, M., Baron, M., Rauch, H., Kline, S.R.: Angstrom-to-millimeter characterization of sedimentary rock microstructure. J. Colloid Interface Sci. 274, 607 (2004)

    Article  Google Scholar 

  41. Radlinski, A.P., Boreham, C.J., Lindner, P., Randl, O., Wignall, G.D., Hinde, A., Hope, J.M.: Small angle neutron scattering signature of oil generation in artificially and naturally matured hydrocarbon source rocks. Org. Geochem. 31, 1 (2000)

    Article  Google Scholar 

  42. Israelachvili, J.N.: Forces between surfaces in liquids. Adv. Colloid Interface Sci. 16, 31 (1982)

    Article  Google Scholar 

  43. Higgins, J.S., Benoit, H.C.: Polymers and Neutron Scattering. Clarendon, Oxford (1994)

    Google Scholar 

  44. Bacon, G.E.: Neutron Diffraction. Clarendon, Oxford (1975)

    Google Scholar 

  45. Endo, H., Schwahn, D., Colfen, H.: On the role of block copolymer additives for calcium carbonate crystallization: small angle neutron scattering investigation by applying contrast variation. J. Chem. Phys. 120, 9410 (2004)

    Article  Google Scholar 

  46. Hoinkis, E., Allen, A.J.: A small-angle neutron scattering study of porous graphitic materials before and after adsorption and condensation of C6D6 within the accessible pores. J. Colloid Interface Sci. 145, 540 (1991)

    Article  Google Scholar 

  47. Wu, W.L.: Small-angle X-ray study of particulate reinforced composites. Polymer 23, 1907 (1982)

    Article  Google Scholar 

  48. Peterlin, A.: Small-angle scattering by a 3 component system. Macromol. Chem. Phys. 87, 152 (1965)

    Article  Google Scholar 

  49. Melnichenko, Y.B., Wignall, G.D.: Small-angle neutron scattering in materials science: recent practical applications. J. Appl. Phys. 102, 021101 (2007)

    Article  Google Scholar 

  50. Rother, G., Melnichenko, Y.B., Wignall, G.D., Cole, D.R., Frielinghaus, H.: Microstructural characterization of adsorption and depletion regimes of supercritical fluids in nanopores. J. Phys. Chem. C 111, 15736 (2007)

    Article  Google Scholar 

  51. Melnichenko, Y.B., Wignall, G.D.: Density and volume fraction of supercritical CO2 in pores of native and oxidized aerogels. Int. J. Thermophys. 30, 1578 (2009)

    Article  Google Scholar 

  52. Ciccariello, S.: The best two-phase idealization of a sample in small-angle scattering. Acta Crystallogr. A 58, 460 (2002)

    Article  Google Scholar 

  53. Pikus, S., Kobylas, E., Ciccariello, S.: Small-angle scattering characterization of n-aliphatic alcohol films adsorbed on hydroxyled porous silicas. J. Appl. Crystallogr. 36, 744 (2003)

    Article  Google Scholar 

  54. Ciccariello, S., Melnichenko, Y.B., He, L.: Supercritical carbon dioxide behavior in porous silica aerogel. J. Appl. Crystallogr. 44, 43 (2011)

    Article  Google Scholar 

  55. Ciccariello, S., Melnichenko, Y.B., He, L.: Phase behavior of carbon dioxide confined in silica aerogel in the vicinity of the bulk critical point. J. Phys. Chem. C 115, 22336 (2011)

    Article  Google Scholar 

  56. Melnichenko, Y.B., Ciccariello, S.: Small-angle neutron scattering study of deuterated propane adsorption in silica aerogel. J. Phys. Chem. C 116, 24661 (2012)

    Article  Google Scholar 

  57. Bahadur, J., Radlinski, A., Melnichenko, Y.B., Mastalerz, M., Schimmelmann, A.: SANS/USANS study of the New Albany Shale: a treatise on microporisity. Energy Fuel 29, 576 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Melnichenko, Y.B. (2016). Fundamentals of Data Analysis. In: Small-Angle Scattering from Confined and Interfacial Fluids. Springer, Cham. https://doi.org/10.1007/978-3-319-01104-2_6

Download citation

Publish with us

Policies and ethics