Skip to main content

Part of the book series: Graduate Texts in Physics ((GTP))

  • 2912 Accesses

Abstract

We present various methods used to solve numerically the Boltzmann transport equation. The moments methods (drift diffusion, hydrodynamic model, energy transport) are first considered. Particle-based methods (Monte Carlo, cellular automata, scattering matrices, and weighted particles method) are then discussed and we conclude with an overview of direct methods of solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Cercignani, Ludwig Boltzmann: The Man Who Trusted Atoms (Oxford University Press, New York, 1998)

    MATH  Google Scholar 

  2. C. Jacoboni, Theory of Electron Transport in Semiconductors (Springer, Berlin/Heidelberg, 2010)

    Book  Google Scholar 

  3. K. Hess, Advanced Theory of Semiconductor Devices (Wiley-IEEE Press, Piscataway, NJ, 1999)

    Google Scholar 

  4. Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  5. W. Shockley, Electrons and Holes in Semiconductors, with Applications to Transistor Electronics, Bell Telephone Laboratories Series (Van Nostrand, New York, 1950)

    Google Scholar 

  6. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, Vienna, 1984)

    Book  Google Scholar 

  7. W. Hänsch, The Drift Diffusion Equation and Its Application to MOSFET Modeling. Series in Computational Microelectronics. (Springer, Vienna, 1991)

    Google Scholar 

  8. K. Hess, J.P. Leburton, Computational Electronics. Semiconductor Transport and Device Simulation (Kluwer Academic, Boston, MA, 1991), p. 47

    Google Scholar 

  9. R. Stratton, Diffusion of hot and cold electrons in semiconductor barriers. Phys. Rev. 126, 2002–2014 (1962)

    Article  ADS  Google Scholar 

  10. W. Jones, N.H. March, Theoretical Solid State Physics. Interscience Monographs and Texts in Physics and Astronomy, vol. 27 (Wiley-Interscience, New York, 1973)

    Google Scholar 

  11. F.J. Blatt, Theory of mobility of electrons in solids, in Solid State Physics, ed. by F. Seitz, D. Turnbull, vol. 4 (Academic, New York, 1957), pp. 199–366

    Google Scholar 

  12. R. Kubo, Statistical–mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570 (1957)

    Google Scholar 

  13. D.A. Greenwood, The Boltzmann equation in the theory of electrical conduction in metals. Proc. Phys. Soc. Lond. 71, 585 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. D.L. Rode, Electron mobility in direct-gap polar semiconductors. Phys. Rev. B 2, 1012 (1970)

    Article  ADS  Google Scholar 

  15. S. Sze, M.K. Lee, Semiconductor Devices: Physics and Technology (Wiley, New York, 2012)

    Google Scholar 

  16. D.L. Scharfetter, H.K. Gummel, Large-signal analysis of a silicon Read diode oscillator. IEEE T. Electron Dev. ED-16, 64 (1969)

    Article  ADS  Google Scholar 

  17. D.M. Caughey, R.E. Thomas, Carrier mobilities in silicon empirically related to doping and field. IEEE Proc. 55, 2192 (1967)

    Article  Google Scholar 

  18. S. Selberherr, W. Hänsch, M. Seavey, J.W. Slotboom, The evolution of the MINIMO mobility model. Solid State Electron. 33, 1425 (1990)

    Article  ADS  Google Scholar 

  19. K.K. Thornber, Current equations for velocity overshoot. Electron Device Lett. EDL-3, 69 (1982)

    Article  Google Scholar 

  20. P.J. Price, On the flow equation in device simulation. J. Appl. Phys. 63, 4718 (1988)

    Article  ADS  Google Scholar 

  21. M. Artaki, Hot-electron flow in an inhomogeneous field. Appl. Phys. Lett. 52 141 (1988)

    Article  ADS  Google Scholar 

  22. W. van Roosbroeck, Theory of the flow of electrons and holes in germanium and other semiconductors. Bell Syst. Tech. J. 29, 560 (1950)

    Article  Google Scholar 

  23. M. Rudan, F. Odeh, Multi-dimensional discretization scheme for the hydrodynamic model of semiconductor devices. COMPEL 5, 149 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. A.M. Anile, S. Pennisi, Thermodynamic derivation of the hydrodynamic model for charge transport in semiconductors, Phys. Rev. B 46, 13186 (1992)

    Article  ADS  MATH  Google Scholar 

  25. M. Trovato, Maximum entropy principle within a total energy scheme: application to hot-carrier transport in semiconductors. Phys. Rev. B 61, 16667 (2000)

    Article  ADS  Google Scholar 

  26. M. Shur, Influence of nonuniform field distribution on frequency limits of GaAs field-effect transistors. Electron. Lett. 12, 615 (1976)

    Article  Google Scholar 

  27. S.-C. Lee, T.-W. Tang, A study of the relaxation-time model based on the Monte Carlo simulation, in Computational Electronics. Semiconductor Transport and Device Simulation, ed. by K. Hess, J.P. Leburton, U. Ravaioli (Kluwer Academic, Boston, MA, 1991), p. 127

    Google Scholar 

  28. G. Baccarani, M.R. Wordeman, An investigation of steady-state velocity overshoot in silicon. Solid State Electron. 28, 407 (1985)

    Article  ADS  Google Scholar 

  29. W. Hänsch, M. Miura-Mattausch, The hot-electron problem in small semiconductor devices, J. Appl. Phys. 60, 650 (1986)

    Article  ADS  Google Scholar 

  30. S.-C. Lee, T.-W. Tang, Transport coefficients for a silicon hydrodynamic model extracted from inhomogeneous Monte-Carlo calculations. Solid State Electron. 35, 561 (1992)

    Article  ADS  Google Scholar 

  31. A.M. Anile, G. Mascali, A two-population model for electron transport in silicon, in Proceedings “WASCOM 2003”: 12th Conference on Waves and Stability in Continuous Media (World Scientific, Singapore, 2003)

    Google Scholar 

  32. H.U. Baranger, J.W. Wilkins, Ballistic structure in the electron distribution function of small semiconducting structures: general features and specific trends. Phys. Rev. B 36, 1487 (1987)

    Article  ADS  Google Scholar 

  33. K. Bløtekjær, Transport equations for electrons in two-valley semiconductors. IEEE Trans. Electron Devices 17, 38 (1970)

    Article  ADS  Google Scholar 

  34. D.J. Howarth, E.H. Sondheimer, The theory of electronic conduction in polar semi-conductors. Proc. R. Soc. Lond. A Mat. 219, 5374 (1953)

    Article  MATH  Google Scholar 

  35. J. Appel, “Polarons”, in Solid State Physics, ed. by F. Seitz, D. Turnbull, H. Ehrenreich, vol. 21 (Academic, New York, 1968), pp. 193–391

    Google Scholar 

  36. S. Reggaini, M.C. Vecchi, M. Rudan, Investigation on electron and hole transport properties using the full-band spherical-harmonics expansion method. IEEE Trans. Elec. Dev. 45, 2010 (1998)

    Article  ADS  Google Scholar 

  37. S. Jin, A. Wettstein, W. Choi, F.M. Bufler, E. Lyumkis, Gate current calculations using spherical harmonic expansion of Boltzmann equation, in Proceedings of SISPAD 2009 (IEEE, Piscataway, NJ, 2009), pp. 202–205

    Google Scholar 

  38. G. Matz, S.-M. Hong, C. Jungemann, Spherical harmonics expansion of the conduction band for deterministic simulation of SiGe HBTs with full band effects, in Proceedings of the SISPAD 2010 (IEEE, Piscataway, NJ, 2010), pp. 167–170

    Google Scholar 

  39. H. Sung-Min, G. Matz, C. Jungemann, A deterministic Boltzmann equation solver based on a higher order spherical harmonics expansion with full-band effects. IEEE T. Electron Dev. 57, 2390 (2010)

    Article  ADS  Google Scholar 

  40. B.H. Floyd, Y.L.L. Coz, Iterative spectral solution of Boltzmann’s equation for semiconductor devices, in Computational Electronics. Semiconductor Transport and Device Simulation, ed. by K. Hess, J.P. Leburton, U. Ravaioli (Kluwer Academic, Boston, MA, 1991), p. 93

    Google Scholar 

  41. S. Krishnamurthy, M. van Schilfgaarde, Eigenvalue solution to steady-state Boltzmann equation, in Computational Electronics. Semiconductor Transport and Device Simulation, K. Hess, J.P. Leburton, U. Ravaioli (Kluwer Academic, Boston, MA, 1991), p. 119

    Google Scholar 

  42. R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (Taylor and Francis, New York, 1988)

    Book  MATH  Google Scholar 

  43. C. Jacoboni, P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation. Series in Computational Microelectronics (Springer, Vienna, 1989)

    Google Scholar 

  44. P.J. Price, Monte Carlo calculation of electron transport in solids, in Semiconductors and Semimetals, ed. by R.K. Willardson, A.C. Beer. Lasers, Junctions, Transported, vol. 14 (Academic, New York, 1979), pp. 249–308

    Google Scholar 

  45. C. Jacoboni, L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys. 55, 645 (1983)

    Article  ADS  Google Scholar 

  46. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  47. T. Kurosawa, Monte Carlo calculation of hot electron problems, International Conference on the Physics of Semiconductors, Kyoto – J. Phys. Soc. Jpn 21, Supplement (1966), pp. 424–426

    Google Scholar 

  48. A.D. Boardman, W. Fawcett, H.D. Rees, Monte Carlo calculation of the velocity-field relationship for gallium arsenide. Solid State Commun. 6, 305 (1968)

    Article  ADS  Google Scholar 

  49. W. Fawcett, A.D. Boardman, S. Swain, Monte Carlo determination of electron transport properties in gallium arsenide. J. Phys. Conf. Ser. 31 (9), 1963–1990 (1970)

    Google Scholar 

  50. R.G. Chambers, The kinetic formulation of conduction problems. Proc. Phys. Soc. Lond. 65, 458 (1952)

    Article  ADS  MATH  Google Scholar 

  51. H.D. Rees, Calculation of distribution functions by exploiting the stability of the steady state. J. Phys. Conf. Ser. 30, 643 (1969)

    Google Scholar 

  52. H.D. Rees, Calculation of steady state distribution functions by exploiting stability. Phys. Lett. 26A, 416 (1968)

    Article  ADS  Google Scholar 

  53. H. Shichijo, K. Hess, Band-structure-dependent transport and impact ionization in GaAs. Phys. Rev. B 23, 4197 (1981)

    Article  ADS  Google Scholar 

  54. J.Y.-F. Tang, K. Hess, Impact ionization of electrons in silicon (steady state). J. Appl. Phys. 54, 5139 (1983)

    Article  ADS  Google Scholar 

  55. J.Y.-F. Tang, K. Hess, Theory of hot electron emission from silicon into silicon dioxide. J. Appl. Phys. 54, 5145 (1983)

    Article  ADS  Google Scholar 

  56. M.V. Fischetti, S.E. Laux, Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 38, 9721 (1988)

    Article  ADS  Google Scholar 

  57. M.V. Fischetti, Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures – Part I: Homogeneous transport. IEEE T. Electron Dev. 38, 634 (1991)

    Article  ADS  Google Scholar 

  58. P.D. Yoder, J.M. Higman, J.D. Bude, K. Hess, Monte Carlo simulation of hot electron transport in Si using a unified pseudopotential description of the crystal. Semicond. Sci. Technol. 7, B357 (1992)

    Article  Google Scholar 

  59. T. Kunikiyo, M. Takenaka, Y. Kamakura, M. Yamaji, H. Mizuno, M. Morifuji, K. Taniguchi, C. Hamaguchi, A Monte Carlo simulation of anisotropic electron transport in silicon including full band structure and anisotropic impact? Ionization model. J. Appl. Phys. 75, 297 (1994)

    Article  ADS  Google Scholar 

  60. Y. Kamakura, H. Mizuno, M. Yamaji, M. Morifuji, K. Taniguchi, C. Hamaguchi, T. Kunikiyo, M. Takenaka, Impact ionization model for full band Monte Carlo simulation J. Appl. Phys. 75, 3500 (1994)

    Article  Google Scholar 

  61. C. Herring, E. Vogt, Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys. Rev. 101, 944 (1956)

    Article  ADS  MATH  Google Scholar 

  62. H. Kahn, A.W. Marshall, Methods of reducing sample size in Monte Carlo computations. J. Oper. Res. Soc. 1, 263 (1953)

    Google Scholar 

  63. J.M. Hammersley, D.C. Handscomb, Monte Carlo Methods (Methuen, London, 1964)

    Book  MATH  Google Scholar 

  64. U. Ravaioli, A. Duncan, A. Pacelli, C. Wordelman, K. Hess, Hierarchy of full band structure models for Monte Carlo simulation. VLSI Des. 6, 1–4 (1998)

    Article  Google Scholar 

  65. K. Kometer, G. Zandler, P. Vogl, Cellular automata simulation of stationary and transient high-field transport in submicron Si and GaAs devices. Semicond. Sci. Technol. 7, B559 (1992)

    Article  Google Scholar 

  66. K. Kometer, G. Zandler, P. Vogl, Lattice-gas cellular-automaton method for semiclassical transport in semiconductors. Phys. Rev. B 46, 1382 (1992)

    Article  ADS  Google Scholar 

  67. M. Saraniti, G. Zandler, G. Formicone, S. Wigger, S. Goodnick, Cellular automata simulation of nanometre-scale MOSFETs. Semicond. Sci. Technol. 13, A177 (1998)

    Article  ADS  Google Scholar 

  68. G. Zandler, A.D. Di Carlo, K. Kometer, P. Lugli, P. Vogl, E. Gornik, A comparison of Monte Carlo and cellular automata approaches for semiconductor device simulation. Electron Device Lett. 14, 77 (1993)

    Article  ADS  Google Scholar 

  69. M. Saraniti, S.M. Goodnick, Hybrid fullband cellular automaton/Monte Carlo approach for fast simulation of charge transport in semiconductors. IEEE Trans. Electron Dev. 47, 1909 (2000)

    Article  ADS  Google Scholar 

  70. B. Niclot, P. Degond, F. Poupaud, Deterministic particle simulations of the Boltzmann transport equation of semiconductors. J. Comput. Phys. 78, 313 (1988)

    Article  ADS  MATH  Google Scholar 

  71. P. Degond, F. Guyot-Delaurens, Particle simulations of the semiconductor Boltzmann equation for one-dimensional inhomogeneous structures. J. Comput. Phys. 90, 65 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. J.P. McKelvey, R.L. Longini, T.P. Brody, Alternative approach to the solution of added carrier transport problems in semiconductors. Phys. Rev. 123, 51 (1961)

    Article  ADS  Google Scholar 

  73. A. Das, M.S. Lundstrom, A scattering matrix approach to device simulation. Solid State Electron. 33(10), 1299 (1990)

    Google Scholar 

  74. M.A. Stettler, M.S. Lundstrom, Self-consistent scattering matrix calculation of the distribution function in semiconductor devices. Appl. Phys. Lett. 60, 2908 (1992)

    Article  ADS  Google Scholar 

  75. M.A. Alam, M.A. Stettler, M.S. Lundstrom, Formulation of the Boltzmann equation in terms of scattering matrices. Solid State Electron.36, 263 (1993)

    Google Scholar 

  76. M.A. Alam, M.A. Stettler, M.S. Lundstrom, A spectral flux method for solving the Boltzmann equation. J. Appl. Phys. 73, 4998 (1993)

    Article  ADS  Google Scholar 

  77. H. Budd, Hot carriers and the path variable method, in International Conference on the Physics of Semiconductors, Kyoto – J. Phys. Soc. Jpn 21, Supplement, 420 (1966)

    Google Scholar 

  78. W. Fawcett, Non-ohmic transport in semiconductors, in Electrons in Crystalline Solids, ed. by A. Salam (International Atomic Energy Agency, Vienna, 1973), p. 531

    Google Scholar 

  79. P.J.Price, The theory of hot electrons. IBM J. Res. Dev. 14, 12 (1970)

    Google Scholar 

  80. D.K. Ferry, Electron transport and breakdown in SiO2. J. Appl. Phys. 50, 1422 (1979)

    Article  ADS  Google Scholar 

  81. C.C.C. Leung, P.A. Childs, Spatially transient hot electron distributions in silicon determined from the Chambers path integral solution of the Boltzmann transport equation. Solid State Electron. 36, 1001 (1993)

    Article  ADS  Google Scholar 

  82. T. Iizuka, M. Fukuma, Carrier transport simulator for silicon based on carrier distribution function evolutions. Solid State Electron. 33, 27 (1990)

    Article  ADS  Google Scholar 

  83. S. Jin, M.V. Fischetti, Ting-wei Tang, Theoretical study of carrier transport in silicon nanowire transistors based on the multisubband Boltzmann transport equation. IEEE Trans. Electron Devices 55, 2886 (2008)

    Google Scholar 

  84. B.R. Nag, Electron Transport in Compound Semi-Conductors – Springer Series in Solid-State Sciences, vol. 11 (Springer, Berlin, 1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fischetti, M.V., Vandenberghe, W.G. (2016). Solution Methods for Semiclassical Transport. In: Advanced Physics of Electron Transport in Semiconductors and Nanostructures. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-01101-1_19

Download citation

Publish with us

Policies and ethics