Skip to main content

Part of the book series: Graduate Texts in Physics ((GTP))

Abstract

In this chapter we discuss how to treat electronic transport in small structures with a full quantum-mechanical formulation; that is, we introduce the problem of “quantum transport.” We introduce the concept of Green’s functions and see how they are related to the density matrix. In order to find a solution of the transport problem, we consider first the case of particles in the presence of a spatially dependent potential, but not interacting with the excitations of the lattice, impurities, or among themselves. This constitutes “ballistic transport” and we see how to formulate it as a Schrödinger equation with open boundary conditions. We discuss the Quantum Transmitting Boundary Method that can be used to solve this problem. Numerical procedures are also presented in some detail. We finally consider the case of many particles interacting with lattice excitations and other perturbations. We outline various methods of solution: Those based on Green’s functions, namely, the Non-Equilibrium Green’s Function formulation and those based on the equation of motion for the density matrix, leading to various Master equations, to the Wigner function formulation, and to Semiconductor Bloch Equations. We briefly discuss the Wigner function approach, since the density-matrix approach will be treated in detail in the following chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D.N. Zubarev, V. Morozov, G. Ropke, Statistical Mechanics of Nonequilibrium Processes: Basic Concepts, Kinetic Theory (Wiley, New York, 1996)

    MATH  Google Scholar 

  2. D.N. Zubarev, V. Morozov, G. Ropke, Statistical Mechanics of Nonequilibrium Processes: Relaxation and Hydrodynamic Processes (Wiley, New York, 1997)

    MATH  Google Scholar 

  3. L.V. Keldysh, Diagram technique for nonequilibrium processes, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JEPT 20, 1018 (1965)]

    Google Scholar 

  4. L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962)

    MATH  Google Scholar 

  5. B. Novakovic, I. Knesevic, Quantum master equations in electronic transport, in Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling, ed. by D. Vasileska, S.M. Goodnick (Springer, New York, 2011), pp. 249–287

    Chapter  Google Scholar 

  6. H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 5th edn. (World Scientific, Singapore, 2009)

    Book  MATH  Google Scholar 

  7. K.M. Kira, S.W. Koch Semiconductor Quantum Optics (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  8. W.R. Frensley, Boundary conditions for open quantum systems driven far from equilibrium. Rev. Mod. Phys. 62, 745 (1990)

    Article  ADS  Google Scholar 

  9. C. Jacoboni, P. Bordone, The Wigner-function approach to non-equilibrium electron transport. Rep. Progr. Phys. 67, 1033 (2004)

    Article  ADS  Google Scholar 

  10. J.M. Sellier, S.M. Amoroso, M. Nedjalkov, S. Selberherr, A. Asenov, I. Dimov, Electron dynamics in nanoscale transistors by means of Wigner and Boltzmann approaches. Phys. A: Stat. Mech. Appl. 398, 194 (2014)

    Article  Google Scholar 

  11. X. Oriols, Quantum-trajectory approach to time-dependent transport in mesoscopic systems with electron–electron interactions. Phys. Rev. Lett. 98, 066803 (2007)

    Article  ADS  Google Scholar 

  12. K.K. Thornber, R.P. Feynman, Velocity acquired by an electron in a finite electric field in a polar crystal. Phys. Rev. B 4, 674 (1971)

    Article  ADS  Google Scholar 

  13. B.A. Mason, K. Hess, Quantum Monte Carlo calculations of electron dynamics in dissipative solid-state systems using real-time path integrals. Phys. Rev. B 39, 5051 (1989)

    Article  ADS  Google Scholar 

  14. C. Jacoboni, Theory of Electron Transport in Semiconductors (Springer, Berlin/Heidelberg, 2010)

    Book  Google Scholar 

  15. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 2014)

    Google Scholar 

  16. C.S. Lent, D.J. Kirkner, The quantum transmitting boundary method. J. Appl. Phys. 67, 6353 (1990)

    Article  ADS  Google Scholar 

  17. R. Lake, G. Klimeck, R.C. Bowen, D. Jovanovic, Single and multiband modeling of quantum electron transport through layered semiconductor devices. J. Appl. Phys. 81, 7845 (1997)

    Article  ADS  Google Scholar 

  18. H.J. Choi, J. Ihm, Ab initio pseudopotential method for the calculation of conductance in quantum wires. Phys. Rev. B 59, 2267 (1999)

    Article  ADS  Google Scholar 

  19. M.V. Fischetti, Bo Fu, S. Narayanan, J. Kim, Semiclassical and quantum electronic transport in nanometer-scale structures: empirical pseudopotential band structure, Monte Carlo simulations and Pauli master equation, in Nano-Electronic Devices: Semiclassical and Quantum Transport Modeling, ed. by D. Vasileska, S.M. Goodnick (Springer, New York, 2011), pp. 183–247

    Google Scholar 

  20. R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Dev. 1, 223 (1957)

    Article  MathSciNet  Google Scholar 

  21. S.E. Laux, A. Kumar, M.V. Fischetti, Analysis of quantum ballistic electron transport in ultra-small semiconductor devices including space-charge and geometric effects. J. Appl. Phys. 95 5545 (2004)

    Article  ADS  Google Scholar 

  22. E.N. Economou, Green’s Functions in Quantum Physics (Springer, Berlin Heidelberg, 2006)

    Book  Google Scholar 

  23. A. Pecchia, A. Di Carlo, Atomistic theory of transport in organic and inorganic nanostructures. Rep. Progr. Phys. 67, 1497 (2004)

    Article  ADS  Google Scholar 

  24. S. Jin, Y.J. Park, H.S. Min, A three-dimensional simulation of quantum transport in silicon nanowire transistor in the presence of electron–phonon interactions. J. Appl. Phys. 99, 123719 (2004)

    Article  ADS  Google Scholar 

  25. R. Rosati, F. Dolcini, R.C. Iotti, F. Rossi, Wigner-function formalism applied to semiconductor quantum devices: failure of the conventional boundary condition scheme. Phys. Rev. B 88, 035401 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fischetti, M.V., Vandenberghe, W.G. (2016). Overview of Quantum-Transport Formalisms. In: Advanced Physics of Electron Transport in Semiconductors and Nanostructures. Graduate Texts in Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-01101-1_17

Download citation

Publish with us

Policies and ethics