Skip to main content

Characterization of Membranes

  • Chapter
Gas Separation Membranes

Abstract

Gas transport through polymers is an area of growing interest as materials with unique transport properties continue to find uses in new, specialized applications ranging from extended life tennis balls to natural gas systems. Membrane users (manufacturers and membrane scientists) require knowledge of membrane characteristics in order to choose an appropriate one for application in different processes. Understanding these characteristics will help to determine membrane casting conditions, control membrane quality, and develop membrane transport. Membrane mechanisms and characteristics include surface morphology, and various chemical and physical properties. An ideal characterization method should be non-destructive, accurate, repeatable, and fast and should maximize data. Many methods of characterization have been devised, which can be classified according to the physical mechanisms they exploit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidhauser JC, Longley KL (1990) Gas transport through bisphenol-containing polymers. ACS Symp Ser 423:159–176

    Article  CAS  Google Scholar 

  2. George SC, Thomas T (2001) Transport phenomena through polymeric systems. Prog Polym Sci 26:985–1017

    Article  CAS  Google Scholar 

  3. Lashkari S, Tran A, Kruczek B (2008) Effect of back diffusion and back permeation of air membrane characterization in a constant pressure system. J Membr Sci 324:162–172

    Article  CAS  Google Scholar 

  4. Tabe Mohammadi A, Matsuura T, Sourirajan S (1995) Design and construction of a gas permeation system for the measurement of low permeation rates and permeate compositions. J Membr Sci 98:281–286

    Article  CAS  Google Scholar 

  5. O’Brien KC, Koros WJ, Barabari TA, Sanders ES (1986) A new technique for the measurement of multicomponent gas transport through polymeric films. J Membr Sci 29:229–238

    Article  Google Scholar 

  6. Moore TT, Damle S, Williams PJ, Koros WJ (2004) Characterization of low permeability gas separation and barrier materials; design and operation conditions. J Membr Sci 245:227–231

    Article  CAS  Google Scholar 

  7. Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell preparation. Int J Hydrogen Energy 35:9349–9384

    Article  CAS  Google Scholar 

  8. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  Google Scholar 

  9. Khulbe KC, Feng CY, Matsuura T (2008) Synthetic polymeric membranes, characterization by atomic forces microscopy. Springer, Heidelberg

    Google Scholar 

  10. Schmitz I, Schreiner M, Friedbacer G, Grasserbaur M (1997) Phase imaging as an extension to tapping mode AFM for the identification of material properties on humidity-sensitive surfaces. Appl Surf Sci 115:190–198

    Article  CAS  Google Scholar 

  11. Drake B, Prater CB, Weisenhorn AL, Gould SAC, Albrecht TR, Quate CF, Cannel PS, Hansma HG, Hansma PK (1989) Imaging crystals, polymers, and processes in water with the atomic force microscope. Science 243:1586–1589

    Article  CAS  Google Scholar 

  12. Martin Y, Williams CC, Wickramasinghe GH (1987) Atomic force microscope-force mapping and profiling on A sub 100-Å scale. J Appl Phys 61:4723–4729

    Article  CAS  Google Scholar 

  13. Albrecht TR, Dovek MM, Lang CA, Grutter P, Quate CF, Kuan SNJ, Frank CW, Pease RFW (1988) Imaging and modification of polymers by scanning tunneling and atomic force microscopy. J Appl Phys 64:1178–1184

    Article  CAS  Google Scholar 

  14. Khulbe KC, Matsuura T (2000) Characterization of synthetic membranes by Raman spectroscopy, electron spin resonance, and atomic force microscopy: a review. Polymer 41:1917–1935

    Article  CAS  Google Scholar 

  15. Hirose M, Itoh H, Minamizaki Y, Kamiyama Y (1996) Ultra-low-pressure reverse osmosis membranes ES 10. In: Proceedings of the international congress on membranes and membrane process, Yokohama, Japan, 18–23 August 1996

    Google Scholar 

  16. Elimelech M, Zhu X, Childress AE, Hong S (1997) Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J Member Sci 127:101–109

    Article  CAS  Google Scholar 

  17. Khulbe KC, Matsuura T, Lamarche G, Kim HJ (1997) The morphology characterisation and performance of dense PPO membranes for gas separation. J Membr Sci 135:211–223

    Article  CAS  Google Scholar 

  18. Kesting RE (1990) The four tiers of structure in integrally skinned phase inversion membranes and their relevance to the various separation regimes. J Appl Polym Sci 53:2739–2752

    Article  Google Scholar 

  19. Mulder M (1992) Basic principles of membrane technology. Kluwer Academic Publishers Group, The Netherlands

    Google Scholar 

  20. Kesting RE, Engdahl M, Stone W Jr (1969) The application of scanning electron microscopy to membrane morphology. J Macromol Sci A—Chemistry 3(1):157–167

    Article  CAS  Google Scholar 

  21. Patterson DA, Havill A, Costello S, See-Toh YH, Livingston AG, Turner A (2009) Membrane characterisation by SEM, TEM and ESEM: the implications of dry and wetted microstructure on mass transfer through integrally skinned polyimide nanofiltration membranes. Sep Puri Technol 66:90–97

    Article  CAS  Google Scholar 

  22. Riley RL, Gardner JO, Merten U (1964) Cellulose acetate membranes: electron microscopy of structure. Science 143:801–803

    Article  CAS  Google Scholar 

  23. Merin U, Cheryan M (1980) Ultrastructure of the surface of a polysulfone ultrafiltration membrane. J Appl Polym Sci 25:2139–2142

    Article  CAS  Google Scholar 

  24. Koutake M, Uchida Y, Kimura T, Sagara A, Watanabe A, Nakao S (1985) Observation of UF membrane pores through a scanning electron microscope and their pure water fluxes. Maku 10:310–312

    Google Scholar 

  25. Zeman L, Denault L (1992) Characterization of microfiltration membranes by image analysis of electron micrographs: part I. Method development. J Membr Sci 71:221–231

    Article  CAS  Google Scholar 

  26. Zeman L (1992) Characterization of microfiltration membranes by image analysis of electron micrographs: part II. Functional and morphological parameters. J Membr Sci 71:233–246

    Article  CAS  Google Scholar 

  27. Schossig M, Paul D (2001) Improved preparation of membrane surfaces for field-emission scanning electron microscopy. J Membr Sci 187:85–91

    Article  Google Scholar 

  28. Wienk IM, Boomgaard TV, Smolders CA (1994) The formation of nodular structures in the top layer of ultrafiltration membranes. J Appl Polym Sci 53:1011–1023

    Article  CAS  Google Scholar 

  29. Rhim JW, Kim JR, Park YI, Lee KH (2001) Modification of polysulfone membranes and their applications to gas separations. J Ind Eng Chem 7:299–304

    CAS  Google Scholar 

  30. Clark MB, Burkhardt CA, Gardella JA (1991) Surface of polymer blends. 4. An ESCA, IR, and DSC study of the effect of homopolymer molecular weight on crystallinity and miscibility of poly(ε-caprolactone)/poly(vinyl chloride) homopolymer blends. Macromolecules 24:799–805

    Article  CAS  Google Scholar 

  31. Brandt W, Berko S, Walker WW (1960) Positronium decay in molecular substances. Phys Rev 120:1289–1295

    Article  CAS  Google Scholar 

  32. Shantarovich VP, Azamatova ZK, Novikov YA, Yampolskii YP (1998) Free-volume distribution of high permeability membrane materials probed by positron annihilation. Macromolecules 31:3963–3966

    Article  CAS  Google Scholar 

  33. Tao SJ (1972) Positronium annihilation in molecular substances. J Chem Phys 56:5499–5510

    Article  CAS  Google Scholar 

  34. Eldrup M, Lightbody D, Sherwood JN (1981) The temperature dependence of positron lifetime in solid pivalic acid. Chem Phys 63:51–58

    Article  CAS  Google Scholar 

  35. Shantarovich VP, Yampolskii YP, Kevdina IB (1994) Free volume and time of a life of positronium in polymeric systems. Chem High Energ 28:53–59

    CAS  Google Scholar 

  36. Gregory RB, Yongkang Z (1991) Positron and positron chemistry (Jean YC, Ed.). World Scientific, Singapore

    Google Scholar 

  37. Gregory RB (1991) Free-volume and pore-size distributions determined by PALS. J Appl Phys 70:4665–4670

    Article  CAS  Google Scholar 

  38. Deng Q, Jean YC (1993) Free-volume distribution of an epoxy polymer probed by positron annihilation spectroscopy: pressure dependence. Macromolecules 26:30–34

    Article  CAS  Google Scholar 

  39. Satyanarayana SV, Subrahmanyam VS, Verma HC, Sharma A, Bhattacharya PK (2006) Application of positron annihilation: study of pervaporation dense membranes. Polymer 47:1300–1307

    Article  CAS  Google Scholar 

  40. Jean YC, Malton PE, Schrader DM (2003) Principles and applications of positron and positronium chemistry. World Scientific Publishers, New Jersey

    Book  Google Scholar 

  41. Jean YC, Sandreczki TC, Ames DP (1986) Positronium annihilation in amine-cured epoxy polymers. J Polym Sci B Polym Phys 24:1247–1258

    Article  CAS  Google Scholar 

  42. Hill AJ, Weinhold S, Stack GM, Tant MR (1996) Effect of copolymer composition on free volume and gas permeability in poly(ethylene terephthalate)-poly(1,4 cyclohexylenedimethylene terephthalate) copolyesters. Eur Polym J 32:843–849

    Article  CAS  Google Scholar 

  43. Yin HH, Yin Z, Ma W, Zhu D (2005) A review of studies of polymeric membranes by positron annihilation lifetime spectroscopy. Plasma Sci Tech 7:3062–3064

    Article  CAS  Google Scholar 

  44. Chen H, Hung WS, Lo CH, Huang SH, Cheng ML, Guang L, Lee KR, Lai JY, Sun YM, Hu CC, Suzuki R, Ohdaira T, Oshima N, Jean YC (2007) Free-volume depth profile of polymeric membranes studied by positron annihilation spectroscopy: layer structure from interfacial polymerization. Macromolecules 40:7542–7557

    Article  CAS  Google Scholar 

  45. Tung KL, Jean YC, Nanda D, Lee KR, Hung WS, Lo CH, Lai JY (2009) Characterization of multilayer nanofiltration membranes using positron annihilation spectroscopy. J Membr Sci 343:147–156

    Article  CAS  Google Scholar 

  46. Shantarovich VP, Kevdina IB, Yampol’skii YP (2000) Evaluation of nonuniformity of polymeric membrane materials by positron annihilation technique. High Energy Chem 34:265–272

    Article  CAS  Google Scholar 

  47. Huang SH, Hung WS, Liaw DJ, Li CL, Kao ST, Wang DM, Guzman MD, Hu CC, Jean YC, Lee KR, Lai JY (2008) Investigation of multilayer pervaporation membrane by positron annihilation spectroscopy. Macromolecules 41:6438–6443

    Article  CAS  Google Scholar 

  48. Marques MFF, Gil CL, Gordo PM, Kajcsos Z, Lima AP, Queiroz DP, Pinho MN (2003) Free-volume studies in polyurethane membranes by positron annihilation spectroscopy. Radiat Phys Chem 68:573–576

    Article  CAS  Google Scholar 

  49. Kobayashi Y, Kazama S, Inoue K, Toyama T, Nagai Y, Haraya K, Mohamed HFM, O’Rouke BE, Oshima N, Kinomura A, Suzuki R (2014) Positron annihilation in cardo-based polymer membranes. J Phys Chem B 118:6007–6014

    Article  CAS  Google Scholar 

  50. Khulbe KC, Matsuura T, Lamarche G, Lamarche AM (2000) X-ray diffraction analysis of dense PPO membranes. J Membr Sci 170:81–89

    Article  CAS  Google Scholar 

  51. Kim TH, Koros WJ, Husk GR, O’Brien KC (1988) Relationship between gas separation properties and chemical structure in a series of aromatic polyimdes. J Membr Sci 37:45–620

    Article  Google Scholar 

  52. Shimazu A, Miyazaki T, Ikeda K (2000) Interpretation of d-spacing determined by wide angle x-rays scattering in 6FDA-based polyimide by molecular modeling. J Membr Sci 166:113–118

    Article  CAS  Google Scholar 

  53. Miller RL, Boyer RF (1984) Regularities in x-ray scattering patterns from amorphous polymers. J Polym Sci Phys Ed 22:2043–2050

    Article  CAS  Google Scholar 

  54. Boyer RF (1987) Order in the amorphous state of polymers. Plenum Press, New York

    Google Scholar 

  55. Khayet M, García-Payo MC (2009) X-ray diffraction study of polyethersulfone polymer, flat sheet and hollow fibers prepared from the same under different gas-gaps. Desalination 246:121–127

    Google Scholar 

  56. Suk D (2005) Development of surface modifying macromolecule blended polyethersulfone membranes for vacuum membrane distillation. Ph.D. thesis, Department of Chemical Engineering, University of Ottawa

    Google Scholar 

  57. Fang Y, Pham VA, Matsuura T, Santerre PJ, Narbaitz R (1994) Effect of surface-modifying macromolecules and solvent evaporation time on the performance of polyethersulfone membranes for the separation of chloroform/water mixtures by pervaporation. J Appl Polym Sci 54:1937–1943

    Article  CAS  Google Scholar 

  58. Ho JY, Matsuura T, Santerre JP (2000) The effect of fluorinated surface modifying macromolecule on the surface morphology of polyethersulfone membranes. J Biomater Sci Polym Ed 11:1085–1104

    Article  CAS  Google Scholar 

  59. Wang Y, Yin S, Ren L, Zhao L (2009) Surface characterization of the chitosan membrane after oxygen plasma treatment and its aging effect. Biomed Mater 4:035003

    Article  Google Scholar 

  60. Pan J, Heberle FA, Petruzielo RS, Katsaas J (2013) Using small-angle neutron scattering to detect nanoscopic lipid domains. Chem Phys Lipids 170–171:19–32

    Article  Google Scholar 

  61. He K, Ludtke SJ, Worcester DL, Huang HW (1996) Neutron scattering in the plane of membranes: structure of alamethicin pores. Biophys J 70:2659–2666

    Article  CAS  Google Scholar 

  62. Strunz P, Mukherji D, Saroun J, Keiderling U, Rösler J (2010) Pore structure characterization and in-situ diffusion test in nanoporous membrane using SANS. J Phys Conf Ser 247:012023

    Article  Google Scholar 

  63. Ye Q, Borbély S, Horvai G (1999) Microstructure of ion-selective plasticized PVC membranes studied by small-angle neutron scattering. Anal Chem 71:4313–4320

    Article  CAS  Google Scholar 

  64. Gall MJ, Hendra PJ, Peacock CJ, Cudby MEA, Willis HA (1972) Laser-Raman spectrum of polyethylene: Part 1. Structure and analysis of the polymer. Polymer 13:104–108

    Article  CAS  Google Scholar 

  65. Khulbe KC, Kruczek B, Chowdhury G, Gagne S, Matsuura T, Verma S (1996) Characterization of membranes prepared from PPO by Raman scattering and atomic force microscopy. J Membr Sci 111:57–70

    Article  CAS  Google Scholar 

  66. Khulbe KC, Matsuura T, Kim HJ (2000) Raman scattering of PPO membranes. J Appl Polym Sci 77:2558–2560

    Article  CAS  Google Scholar 

  67. Khulbe KC, Chowdhury G, Matsuura T, Lamarche G (1997) Characterization of PPO [poly(phenylene oxide)] powder and membranes from it by ESR technique. J Membr Sci 123:9–15

    Article  CAS  Google Scholar 

  68. Froyer G, Maurice F, Bernier P, Mc Andrew P (1982) EPR studies on polyphenylene)s synthesized by two different routes. Polymer 23:1103–1105

    Article  CAS  Google Scholar 

  69. Lou Y, Ge M, Freed JH (2001) A multifrequency ESR study of the complex dynamics of membranes. J Phys Chem B 105:11053–11056

    Article  CAS  Google Scholar 

  70. Stone TJ, Buckman T, Nordio PC, McConnel HM (1965) Spin-labeled biomolecules. Proc Natl Acad Sci U S A 54:1010–1017

    Article  CAS  Google Scholar 

  71. Miller WG (1976) Spin labeled synthetic polymers molecular biology spin labeling II: Theory and application. Academic Press, New York

    Google Scholar 

  72. Khulbe KC, Chowdhury G, Kruczek B, Vujosevic R, Matsuura T, Lamarche G (1997) Characterization of the PPO dense membrane prepared at different temperatures by ESR, atomic force microscope and gas permeation. J Membr Sci 126:115–122

    Article  CAS  Google Scholar 

  73. Khulbe KC, Matsuura T, Feng CY, Lamarcdhe G, Lamarche AM (2002) Characterization of ultrafiltration membrane prepared from poly ethersulfone by using electron spin resonance technique. Sep Purif Technol 29:15–22

    Article  CAS  Google Scholar 

  74. Griffith OH, Waggnor AS (1969) Nitroxide free radicals: Spin labels for probing biomolecular structure. Acct Chem Res 2:17–24

    Article  CAS  Google Scholar 

  75. Porbeni FE, Shin ID, Shuai XT, Wang XW, White JL, Jia X, Tonelli AE (2005) Morphology and dynamics of the poly(ϵ-caprolactone)-b-poly(L-lactide) diblock copolymer and its inclusion compound with α-cyclodextrin: A solid-state 13C NMR study. J Polym Sci Part B: Polym Phys 43:2086–2096

    Article  CAS  Google Scholar 

  76. Wang LY, Fang PF, Ye CH, Feng JW (2006) Solid-state NMR characterizations on phase structures and molecular dynamics of poly(ethylene-co-vinyl acetate). J Polym Sci Part B: Polym Phys 44:2864–2879

    Article  CAS  Google Scholar 

  77. Kurosu H, Yamamoto Y, Fujikawa A, Kawabata E, Sone M, Naga N (2009) Structure and dynamics of poly(ethylene-co-1,5-hexadiene) as studied by solid state 13C NMR and quantum chemical calculations. J Mol Struct 921:208–214

    Article  CAS  Google Scholar 

  78. Laws DD, Bitter H-ML, Jerschow A (2002) Solid-state NMR spectroscopic methods in chemistry. Angew Chem Int Ed 41:3096–3129

    Article  CAS  Google Scholar 

  79. Pawley JB (ed) (2006) Handbook of biological confocal microscopy. Springer, Berlin

    Google Scholar 

  80. Ho DL, Hammouda B, Kline S, Chen WR (2006) Unusual phase behavior in mixtures of poly(ethylene oxide) and ethyl alcohol. J Polym Sci Part B: Polym Phys 44:557–564

    Article  CAS  Google Scholar 

  81. The MicroSpy® FT, FRT, Fries Research & Technology GmbH. http://www.frt-gmbh.com

  82. Dean JA (1995) The analytical chemistry handbook. McGraw Hill, New York

    Google Scholar 

  83. Chiu MH, Prenner EJ (2011) Differential scanning calorimetry: an invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J Pharm Bioallied Sci 3:39–59

    Article  CAS  Google Scholar 

  84. Xu ZK, Huang XJ, Wan LS (2009) Surface engineering of polymer membranes (advanced topics in science and technology in China). Springer, New York

    Book  Google Scholar 

  85. Joseph IG, Dale EN, Patrick E, David CJ, Charles EL, Eric L, Linda S, Joseph RM (2003) Scanning electron microscopy and x-ray microanalysis. Springer, New York

    Google Scholar 

  86. Ashby MF, Jones DRH (1996) Energy materials I, 2nd edn. Butterworth Heinemann, Oxford

    Google Scholar 

  87. Nghiem LD, Schäfer AI (2006) Fouling autopsy of hollow-fiber MF membranes in wastewater reclamation. Desalination 188:113–121

    Article  CAS  Google Scholar 

  88. Ginga NJ, Sitarama SK (2011) New method to measure tensile strength of low modulus thin films. Int J Fract 170:199–206

    Article  Google Scholar 

  89. Beer F, Johnston ER, John D, Mazurek D (2009) Mechanics of materials. McGraw Hill, Houston, TX

    Google Scholar 

  90. Askeland DR, Phulé PP (2006) The science and engineering of materials. Cengage Learning, United Kingdom

    Google Scholar 

  91. Raegen AN, Dalnoki-Veress K, Wan KT, Jones RA (2006) Measurement of adhesion energies and Young’s modulus in thin polymer films using a novel axisymmetric peel test geometry. Eur Phys J E Soft Matter 19:453–459

    Article  CAS  Google Scholar 

  92. Rafiq S, Man Z, Maitra S, Maulud A, Ahmad F, Muhammad N (2011) Preparation of asymmetric polysulfone/polyimide blended membranes for CO2 separation. Korean J Chem Eng 28:2050–2056

    Article  CAS  Google Scholar 

  93. Yang J, Brown P (2007) Highly gas permselective polyetherketone hollow fibre membranes using aqueous sulfuric acid solution as coagulant. e-Polymers 7:884–895

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ismail, A.F., Khulbe, K.C., Matsuura, T. (2015). Characterization of Membranes. In: Gas Separation Membranes. Springer, Cham. https://doi.org/10.1007/978-3-319-01095-3_7

Download citation

Publish with us

Policies and ethics