Skip to main content

Application of Gas Separation Membranes

  • Chapter
Gas Separation Membranes

Abstract

Membrane-based gas separation (GS) systems are today widely accepted and, in some cases, used as unit operations for generation, separation, and purification of gases in gas, chemical, petroleum, and allied industries. There are several fields of application of membrane GS, and several membrane materials and membrane modular solutions are available today for the various fields of interest. However, the growth of large-scale industrial applications for GS is still far from reaching the real potential this technology offers. Together with the investigation of new materials with improved properties, a key component for widespread use of this technology is a better understanding and utilization of the unit operations already available on the market in integrated membrane systems, combining various membrane operations in industrial processes. The role of membrane engineering is crucial to overcome this hurdle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brunetti A, Barbieri G, Drioli E (2013) Gas separation—applications. In: Encyclopedia of membrane science and technology. Wiley, Hoboken, NJ

    Google Scholar 

  2. Baker RW (2002) Future direction of membrane gas separation technology. Ind Eng Chem Res 41:1303–1411

    Article  Google Scholar 

  3. Bernardo P, Drioli E, Golemme G (2009) Membrane gas separation: a review/state of the art. Ind Eng Chem Res 48:4638–4663

    Article  CAS  Google Scholar 

  4. http://www.mtrinc.com/gas_separation.html

  5. Koros WJ, Mahajan R (2000) Pushing the limits on possibilities for large scale gas separation: which strategies? J Membr Sci 175:181–196

    Article  CAS  Google Scholar 

  6. Pandey P, Chauhan RS (2001) Membranes for gas separation. Prog Polym Sci 26:853–893

    Article  CAS  Google Scholar 

  7. Meriläinen A, Seppälä A, Kauranen P (2012) Minimizing specific energy consumption of oxygen enrichment in polymeric hollow-fiber membrane modules. App Energy 94:285–294

    Article  Google Scholar 

  8. Burdny T, Struchtrup H (2010) Hybrid membrane/cryogenic separation of oxygen from air for use in oxy-fuel process. Energy 35:1884–1897

    Article  Google Scholar 

  9. Allen JB (1995) Making oxygen on the moon. In: Popular science. Bonnier Corporation, USA

    Google Scholar 

  10. Kluiters SCA (2004) Status review on membrane systems for hydrogen separation: intermediate report for EU project MIGREYD NNE5-2001670

    Google Scholar 

  11. Kaldis SP, Kapantaidakis GC, Sakellaropoulos GP (2000) Simulation of multicomponent gas separation in a hollow fiber membrane by orthogonal collocation-hydrogen recovery from refinery gases. J Membrane Sci 173:61–71

    Article  CAS  Google Scholar 

  12. Ockwig NW, Nenoff TM (2010) Membranes for hydrogen separation. Chem Rev 107:4078–4110

    Article  Google Scholar 

  13. Gopalan S (2002) Using ceramic mixed ionic and electronic conductors for gas separation. JOM—J Min Met Mat S 54:26–29

    Article  CAS  Google Scholar 

  14. DOE: project facts vision 21, June 2000, http://www.doe.gov

  15. Meinema HA, Dirrix RWJ, Brinkman HW, Terpstra RA, Jekerle J, Kösters PH (2005) Ceramic membranes for gas separation: recent developments and state of the art. Interceram 54:86–91

    CAS  Google Scholar 

  16. Grainger D, Hägg MB (2008) The recovery by carbon molecular sieve membranes of hydrogen transmitted in natural gas networks. Int J Hydrogen Energy 33:2379–2388

    Article  CAS  Google Scholar 

  17. http://www.mtrinc.com/hydrogen_purification_in_refineries.html. Accessed March 2014

  18. Henis JMS (1994) Commercial and practical aspects of gas separation membranes. In: Paul DR, Yampol’skii YP (eds) Polymeric gas separation Membranes. CRC Press, Boca Raton, FL

    Google Scholar 

  19. w.w.w.medal.airliquide.com/en/hydrogen-membrane-gas-separation/hydrogen-membrane-refineries.html

  20. Adams T (2012) II.C.1 membrane separation—bulk amorphous hydrogen purification/separation membranes. FY 2008 annual progress report, DOE hydrogen program, 2012, 113–116

    Google Scholar 

  21. Guo H, Zhu G, Hewitt IJ, Qiu S (2009) “Twin copper source” growth of metal-organic framework membranes: Cu3(BTC)2 with high permeability and selectivity for recycling H2. J Am Chem Soc 131:1646–1647

    Article  CAS  Google Scholar 

  22. Phair JW, Badwal SPS (2006) Review of proton conductors for hydrogen separation. Ionics 12:103–115

    Article  CAS  Google Scholar 

  23. Metz B, Davidson O, de Coninck H, Loos M, Mayer L (eds) (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge, UK

    Google Scholar 

  24. Mohshim DF, Mukhtar HB, Man Z, Nasir R (2013) Latest development on membrane fabrication for natural gas. J Eng 101746:7

    Google Scholar 

  25. Pires JCM, Martins FG, Alvim MCM, Simões M (2011) Recent developments on carbon capture and storage: an overview. Chem Eng Res Des 89:1446–1460

    Article  CAS  Google Scholar 

  26. Kim S, Lee YM (2012) Thermally rearranged (TR) polymer membranes with nanoengineered cavities tuned for CO2 separation. J Nanopart Res 14:949–960

    Article  Google Scholar 

  27. Merkel TC, Lin H, Wei X, Baker R (2010) Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Membr Sci 359:126–139

    Article  CAS  Google Scholar 

  28. Yama K, Kazama S, Yogo K (2008) Development of innovative gas separation membranes through sub-nanoscale materials control. GCEP, Stanford University

    Google Scholar 

  29. Scholes CA, Stevens GW, Kentish SE (2012) Membrane gas separation applications in natural gas processing. Fuel 96:15–28

    Article  CAS  Google Scholar 

  30. Du N, Park HB, Dal-Cin MM, Guiver MD (2012) Advances in high permeability polymeric membrane materials for CO2 separations. Energy Environ Sci 5:7306–7322

    Article  CAS  Google Scholar 

  31. Du N, Park HB, Robertson GP, Dal-Cin MM, Visser T, Scoles L, Guiver MD (2011) Polymer nanosieve membranes for CO2-capture applications. Nat Mater 10:372–375

    Article  CAS  Google Scholar 

  32. Lee SH, Kim BS, Lee EW, Park YI, Lee JM (2006) The removal of acid gases from crude natural gas by using novel supported liquid membranes. Desalination 200:21–22

    Article  CAS  Google Scholar 

  33. Park HB, Jung CH, Lee YM, Hill AJ, Pas SJ, Mudie ST, Van Wagner E, Freeman BD, Cookson DJ (2007) Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318:254–258

    Article  CAS  Google Scholar 

  34. Park HB, Han SH, Jung CH, Lee YM, Hill AJ (2010) Thermally rearranged (TR) polymer membranes for CO2 separation. J Membr Sci 359:11–24

    Article  CAS  Google Scholar 

  35. Choi JI, Jung CH, Han SH, Park HB, Lee YM (2010) Thermally rearranged (TR) poly(benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity. J Membr Sci 349:358–368

    Article  CAS  Google Scholar 

  36. Kim S, Han SH, Lee YM (2012) Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture. J Membr Sci 403–404:169–178

    Article  Google Scholar 

  37. Chen CC, Miller JS, Koros WJ (2013) Characterization of thermally cross-linkable hollow fiber membranes for natural gas separation. Ind Eng Chem Res 52:1015–1022

    Article  CAS  Google Scholar 

  38. Kratochvil AM, Koros WJ (2008) Decarboxylation-induced cross-linking of a polyimide for enhanced CO2 plasticization resistance. Macromolecules 41:7920–7927

    Article  CAS  Google Scholar 

  39. Qiu WL, Chen CC, Xu L, Cui L, Paul DR, Koros WJ (2011) Sub-Tg cross-linking of a polyimide membrane for enhanced CO2 plasticization resistance for natural gas separation. Macromolecules 44:6046–6056

    Article  CAS  Google Scholar 

  40. Bhide BD, Voskericyan A, Stern SA (1998) Hybrid process for the removal of acid gases from natural gas. J Membr Sci 140:27–49

    Article  CAS  Google Scholar 

  41. Carreon MA (2011) Novel membranes for efficient CO2 separation. In: Proceedings of the 22nd national NSF EPSCoR conference. Coeur d’Alene Idaho, 27 Oct 2011

    Google Scholar 

  42. Aitken CL, Koros WJ, Paul DR (1992) Gas transport properties of biphenol polysulfones. Macromolecules 25:3651–3658

    Article  CAS  Google Scholar 

  43. Cnop T, Dortmundt D, Schott M (2007) Continued development of gas separation membranes for highly sour service. Sour oil and gas advanced technology conference

    Google Scholar 

  44. Kulkarni SS, Funk EW, Li NN (1983) Membrane separation processes for acid gases. AICHE summer national meeting, Denver, 28–31 Aug 1983

    Google Scholar 

  45. Mazur WH, Chan MC (1982) Membranes for natural gas sweetening and CO2 enrichment. Chem Eng Prog 78:38–43

    Google Scholar 

  46. Cooley ET (1984) Spiral wound membranes carbon dioxide removal process for the well head. AIChE spring national meeting, California, 21 May 1984

    Google Scholar 

  47. Grey NR, Mazur WH (1984) Membrane separation of carbon dioxide and hydrogen sulfide from natural gas-field experience. American Institute of Chemical Engineers, Spring national meeting, California, 20–23 May 1984

    Google Scholar 

  48. Yoshino M, Nakamura S, Okamoto KH, K-I TN, Kusuki Y (2003) Olefin/paraffin separation performance of asymmetric hollow fiber membranes of 6FDA/BPDA-DDBT system. J Membr Sci 212:13–27

    Article  CAS  Google Scholar 

  49. Lucadamo GA (1986) Membrane-aided distillation for carbon dioxide and hydrocarbon separation. US patent 4602477, 29 Jul 1986

    Google Scholar 

  50. Kujawski W (2000) Application of pervaporation and vapor permeation in environmental protection. Pol J Environ Stud 9:13–26

    CAS  Google Scholar 

  51. Baker RW, Kaschemekat JG, Wijmans JH (1998) The design of membrane vapor-gas separation systems. J Membr Sci 151:55–62

    Article  CAS  Google Scholar 

  52. Wang H, Lin YS (2012) Effects of water vapor on gas permeation and separation properties of MFI zeolite membranes at high temperatures. AIChE J 58:153–162

    Article  CAS  Google Scholar 

  53. Baker WJW, Kapteijn F, Poppe J, Moulijn JA (1996) Permeation characteristics of a metal-supported silicate-1 zeolite membrane. J Membr Sci 117:57–78

    Article  Google Scholar 

  54. Noack M, Kolsch P, Caro J, Schneider M, Toussaint P, Sieber I (2000) MFI membranes of different Si/Al ratios for pervaporation and steam permeation. Micro Meso Mater 35–36:253–265

    Article  Google Scholar 

  55. Yeow ML, Field RW, Li K, Teo WK (2002) Preparation of divinyl-PDMS/PVDF composite hollow fiber membrane for BTX removal. J Membr Sci 203:137–143

    Article  CAS  Google Scholar 

  56. U.S. Department of Energy, Membrane technology workshop summary report Nov. 2012, Workshop held on July 24, 2012, Rosemont, Illinois

    Google Scholar 

  57. U.S. Department of Energy, Energy efficiency & renewable energy. Advanced membrane technology for hydrocarbon separations: new membrane technology for natural gas dehydration promises improved separation efficiency, May 2009, Rosemont, Illinois

    Google Scholar 

  58. Feng H, Zhang H, Xu L (2007) Polymeric membranes for natural gas conditioning. Energy Source Part A 29:1269–1278

    Article  CAS  Google Scholar 

  59. Faiz R, Li K (2012) Polymer membranes for light olefin/paraffin separation. Desalination 287:62–97

    Article  Google Scholar 

  60. Semenova SI (2004) Polymer membranes for hydrocarbon separation and removal. J Membr Sci 231:189–207

    Article  CAS  Google Scholar 

  61. Ito A, Hwang ST (1989) Permeation of propane and propylene through cellulosic poymer membranes. J Appl Polym Sci 38:483–490

    Article  CAS  Google Scholar 

  62. Chan SS, Wang R, Chung TS, Liu Y (2002) C2 and C3 hydrocarbon separations in poly(1,5-naphthalene-2-2’-bis(3,4-phthalic) hexafluoropropane) diimide (6FDA-1,5NDA) dense membranes. J Membr Sci 210:55–64

    Article  CAS  Google Scholar 

  63. Nymeijer K, Visser T, Assen R, Wessling M (2004) Super selective membranes in gas-liquid membrane contactors for olefin/paraffin separation. J Membr Sci 232:107–114

    Article  CAS  Google Scholar 

  64. Suzuki Y, Nishide H, Tsuchida E (2000) Membranes of the picket fence cobalt porphyrin complexed with poly(vinylimidazole and pyridine): selective optical response to oxygen. Macromolecules 33:2530–2534

    Article  CAS  Google Scholar 

  65. Nishide H, Tsukahara Y, Tsuchida E (1998) Highly selective oxygen permeation through a poly(vinylidene dichloride)–cobalt porphyrin membrane: hopping transport of oxygen via the fixed cobalt porphyrin carrier. J Phys Chem B 102:8766–8770

    Article  CAS  Google Scholar 

  66. Sungpet A, Way JD, Koval CA, Eberhart ME (2001) Silver doped Nafion-poly(pyrrole) membranes for facilitated permeation of liquid-phase olefins. J Membr Sci 189:271–279

    Article  CAS  Google Scholar 

  67. Müller J, Peinemann K-V, Müller J (2002) Development of facilitated transport membranes for the separation of olefins from gas streams. Desalination 145:339–345

    Article  Google Scholar 

  68. Kim JH, Won J, Kang YS (2004) Olefin-induced dissolution of silver salts physically dispersed in inert polymers and their applications to olefin/paraffin separation. J Membr Sci 241:403–407

    Article  CAS  Google Scholar 

  69. Pollo LD, Durate LT, Anacleo M, Habert AC, Borges CP (2012) Polymeric membranes containing silver salts for propylene/propane separation. Braz J Chem Eng 29:307–314

    Article  CAS  Google Scholar 

  70. Chilukuri P, Rademakers K, Nymeijer K, vab der Ham L, Van dewn Berg H (2007) Propylene/propane separation with a gas/liquid membrane contactor using a silver salt solution. Ind Eng Chem Res 46:8701–8709

    Article  CAS  Google Scholar 

  71. Kang SW, Char K, Kang YS (2008) Novel application of partially charged silver nanoparticles for facilitated transport in olefin/paraffin separation membranes. Chem Mater 20:1308–1311

    Article  CAS  Google Scholar 

  72. Feng X, Pan CY, Ivory J, Ghosh D (1998) Integrated membrane/adsorption process for gas separation. Chem Eng Sci 53:1689–1698

    Article  CAS  Google Scholar 

  73. Feng X, Pan CY, Ivory J (2000) Pressure swing permeation: novel process for gas separation by membranes. AIChE J 46:724–733

    Article  CAS  Google Scholar 

  74. Esteves IAAC, Mota JPB (2002) Simulation of a new hybrid membrane/pressure swing adsorption process for gas separation. Desalination 148:275–280

    Article  CAS  Google Scholar 

  75. Wankat PC, Kostroski KP (2011) Hybrid membrane-cryogenic distillation air separation process for oxygen production. Sep Sci Technol 46:1439–1545

    Article  Google Scholar 

  76. Agrawal R, Auvil SR, Choe JS, Woodward DW (1990) Membrane/cryogenic hybrid scheme for argon production from air. Gas Sep Purif 4:75–80

    Article  CAS  Google Scholar 

  77. Burkinshaw JR, Waldo RA (1998) Distillation plus membrane processing of gas streams. US patent 4936887 A

    Google Scholar 

  78. Danckwerts PV (1970) Gas-liquid reactions. McGraw Hill, New York

    Google Scholar 

  79. Kosaraju P, Kovvali AS, Korikov A, Sirkar KK (2005) Hollow fiber membrane contactor based CO2 absorption-stripping using novel solvents and membranes. Ind Eng Chem Res 44:1250–1258

    Article  CAS  Google Scholar 

  80. Feron PHM, Jansen AE (2002) CO2 separation with polyolefin membrane contactors and dedicated absorption liquids: performance and prospects. Sep Purif Technol 27:231–242

    Article  CAS  Google Scholar 

  81. Yeon SH, Lee KS, Sea B, Park YI, Lee KH (2005) Application of pilot-scale membrane contactor hybrid system for removal of carbon dioxide from flue gas. J Membr Sci 257:156–160

    Article  CAS  Google Scholar 

  82. Boucif N, Corriou JP, Roizard D, Favre E (2011) Carbon dioxide absorption by monoethanolamine in hollow fiber membrane contactors: a parametric investigation. AIChE J 58:2843–2855

    Article  Google Scholar 

  83. Castro-Domínguez B, Leelachaikul P, Takagaki A, Sugawara T, Kikuchi R, Oyama ST (2013) Perfluorocarbon-based supported liquid membranes for O2/N2 separation. Sep Purif Technol 116:19–24

    Article  Google Scholar 

  84. Younas M, Druon Bocquet S, Sanchez J (2008) Extraction of aroma compounds in HFMC: dynamic modeling and simulation. J Membr Sci 323:386–394

    Article  CAS  Google Scholar 

  85. Goel V, Mauro AA, DiLeo AJ, Meiser AP, Pluskai M (1992) Deadend microfiltration: applications, design and cost. In: Ho WSW, Sirkar KK (eds) Membrane handbook. Van Vostrand Reinhold, New York

    Google Scholar 

  86. Kim B, Harriot P (1987) Critical entry pressure for liquids in hydrophobic membranes. J Colloid Interf Sci 115:1910–1916

    Google Scholar 

  87. Stanojević M, Lazarević B, Radić D (2003) Review of membrane contactors designs and applications of different modules in industry. FME Transactions 31:91–98

    Google Scholar 

  88. Dindore VY, Brilman DWF, Versteg GF (2005) Hollow fiber membrane contactor as a gas-liquid model contactor. Chem Eng J 60:467–479

    Article  CAS  Google Scholar 

  89. Simons K, Nijmeijer K, Wessling M (2009) Gas-liquid membrane contactors for CO2 removal. J Membr Sci 340:214–220

    Article  CAS  Google Scholar 

  90. Li JL, Chen BH (2005) Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Sep Purif Technol 41:109–122

    Article  CAS  Google Scholar 

  91. Rongwong W, Jiraratananon R, Atchariyawut S (2009) Experimental study of membrane wetting in gas-liquid membrane contacting process for absorption by single and mixed absorbents. Sep Purif Technol 69:118–125

    Article  CAS  Google Scholar 

  92. Rajabzadeh S, Yoshimoto S, Teramoto M, Al-Marzouqi M, Matsuyama H (2009) CO2 absorption by using PVDF hollow fiber membranes contactors with various membrane structure. Sep Purif Technol 69:210–220

    Article  CAS  Google Scholar 

  93. Rajabzadeh S, Teramoto M, Al-Marzouqi M, Kamio E, Ohmukai Y, Maruyama T, Matsuyama H (2010) Experimental and theoretical study on propylene absorption by using PVDF hollow fiber membrane contactors with various membrane structures. J Membr Sci 346:86–97

    Article  CAS  Google Scholar 

  94. Kartohardjono S, Nata PA, Prasetio E, Yuliusman (2009) Performance of hollow fiber membrane gas-liquid contactors to absorb CO2 using diethanolamine (DEA) as a solvent. Makara Teknolgi 13:86–90

    Google Scholar 

  95. Faiz R, Fallanza M, Ortiz I, Li K (2013) Separation of olefin/paraffin gas mixtures using ceramic hollow fiber membrane contactors. Ind Eng Chem Res 52:7918–7929

    Article  CAS  Google Scholar 

  96. Marjani A, Shirazian S (2011) CFD simulation of SO2 removal from gas mixtures using ceramic membranes. World Acad Sci Eng Technol 58:868–871

    Google Scholar 

  97. Al-Saffar HB, Ozturk B, Hughes R (1997) A comparison of porous and non porous gas-liquid membrane contactors for gas separation. Chem Eng Res Des 75:685–692

    Article  CAS  Google Scholar 

  98. Qi Z, Clussler EL (1985) Microporous hollow fibers for gas absorption: 1. Mass transfer in the liquid. J Membr Sci 23:321–332

    Article  CAS  Google Scholar 

  99. Karoor S, Sirkar KK (1993) Gas absorption studies in microporous hollow fiber membrane modules. Ind Eng Chem Res 32:674–684

    Article  CAS  Google Scholar 

  100. Zhikang X., Jianli W, Wei C, Youyi X (2001) Separation and fixation of carbon dioxide using polymeric membrane contactor. First national conference on carbon sequestration, U.S. Department of Energy, NETL, 14–17

    Google Scholar 

  101. Keshavarz P, Faithikalajahi J, Ayatollahi S (2008) Analysis of CO2 separation of a partially wetted hollow fiber membrane contactor. J Hazard Mater 152:1237–1247

    Article  CAS  Google Scholar 

  102. Ghasem N, Al-Marzouqi M (2012) Effect of nonsolvent additive on the effectiveness of polyvinylidene fluoride membrane fabricated with thermal induced phase separation method for carbon dioxide absorption. J Chem Eng Process Technol 3:1, http://dx.doi.org/4172/2157-7048.1000125

    Article  Google Scholar 

  103. Usachov V, Laguntsov N, Okunev A, Teplyakov V, Glukhov S (2003) Experimental study of the membrane contactor for gas dehumidification. Ars Separatoria Acta 2:36–46

    Google Scholar 

  104. Bottino A, Capannelli G, Comite A, Firpo R, Felice RD, Pinacci P (2006) Separation of carbon dioxide from the flue gases using membrane contactors. Desalination 200:609–611

    Article  CAS  Google Scholar 

  105. Nymeijer DC, Visser T, Assen R, Wessling M (2004) Composite hollow fiber gas-liquid membrane contactors for olefin/paraffin separation. Sep Purif Technol 37:209–220

    Article  CAS  Google Scholar 

  106. Yan SP, Fang MX, Zhang WF, Wang SY, Xu ZK, Luo ZY, Cen KF (2007) Experimental study on the separation of CO2 from flue gas using hollow fiber membrane contactors without wetting. Fuel Process Technol 88:501–511

    Article  CAS  Google Scholar 

  107. Zhu B, Chen W, Wang J, Xu Y, Xu Z (2003) Separation of carbon dioxide from gas mixture by membrane contactor. Huan Jing Ke Xue 24:34–38

    CAS  Google Scholar 

  108. Wang R, Zhang HY, Feron PHM, Liang DT (2005) Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors. Sep Purif Technol 46:33–40

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ismail, A.F., Khulbe, K.C., Matsuura, T. (2015). Application of Gas Separation Membranes. In: Gas Separation Membranes. Springer, Cham. https://doi.org/10.1007/978-3-319-01095-3_6

Download citation

Publish with us

Policies and ethics