Skip to main content

Membrane Modules and Process Design

  • Chapter
Gas Separation Membranes

Abstract

Hundreds of thousands of square meters of membrane are needed to perform the required separation of compounds in industrial plants. There are several efficient and economical ways to create a large surface area in a membrane package for effective compound separation. From an overall cost standpoint, not only the cost of membranes per unit area is crucial but also the cost of the containment vessel into which they are mounted. These packages are called membrane modules. The most important are: Plate-and-frame, Tubular, Spiral-wound and Hollow fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker RW, Wijmans JG, Kaschemekat JH (1998) The design of membrane vapor-gas separation systems. J Membr Sci 151:55–62

    Article  CAS  Google Scholar 

  2. Baker RW (2012) Membrane technology and applications. Wiley, Hoboken, NJ

    Book  Google Scholar 

  3. Mulder M (1996) Basic principles of membrane technology. Springer, Berlin, Heidelberg, NY

    Book  Google Scholar 

  4. Kluiters SCA (2004) Status review on membrane systems for hydrogen separation. Intermediate report EU project MIGREYD NNE5-2001-670, ECN-C-04-102

    Google Scholar 

  5. Strathmann H, Bell C-M, Kerres J (1990) Gas separation and pervaporation: membrane and module development. Desalination 77:259–278

    Article  CAS  Google Scholar 

  6. Takaba H, Nakao S (2005) Computational fluid dynamics study on concentration polarization in H2/CO separation membranes. J Membr Sci 249:83–88

    Article  CAS  Google Scholar 

  7. Katoh T, Tokumura M, Yoshikawa H, Kawase Y (2011) Dynamic simulation of multicomponent gas separation by hollow-fiber membrane module: nonideal mixing flows in permeate and residue sides using the tanks-in-series model. Sep Purif Technol 76:362–372

    Article  CAS  Google Scholar 

  8. Feron PHM, Jansen AE (1995) The production of carbon dioxide from flue gas by membrane gas absorption and reuse in the horticultural industry. Energy Convers Manag 36:411–414

    Article  CAS  Google Scholar 

  9. Coker DT, Freeman BD, Fleming GK (1998) Modeling multicomponent gas separation using hollow-fiber membrane contactors. AIChE J 44:1289–1302

    Article  CAS  Google Scholar 

  10. Nymeijer DC, Visser T, Assen R, Wessling M (2004) Composite hollow-fiber gas–liquid membrane contactors for olefin/paraffin separation. Sep Purif Technol 37:209–220

    Article  CAS  Google Scholar 

  11. Stanojević M, Lazarević B, Radić D (2003) Review of membrane contactors designs and applications of different modules in industry. FME Trans 31:91–98

    Google Scholar 

  12. Li JL, Chen BH (2005) Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Sep Purif Technol 41:109–122

    Article  CAS  Google Scholar 

  13. Sengbusch GV (1994) Future of membranes, technological and economical aspects. Vortrag: Synthetic Membranes in Science and Industry, Tüebingen

    Google Scholar 

  14. Gottschlich DE, Roberts DL, Way JD (1968) A theoretical comparison of facilitated transport and solution-diffusion membrane modules for gas separation. Gas Sep Purif 2:65–71

    Article  Google Scholar 

  15. Qi R, Henson MA (1998) Optimal design of spiral-wound membrane networks for gas separations. J Membr Sci 148:71–89

    Article  CAS  Google Scholar 

  16. Qi R, Henson MA (2000) Membrane system design for multicomponent gas mixtures via mixed-integer nonlinear programming. Comput Chem Eng 24:2719–2737

    Article  CAS  Google Scholar 

  17. Lababidi H, Al-Enezi GA, Ettouney HM (1996) Optimization of module configuration in membrane gas separation. J Membr Sci 112:185–197

    Article  CAS  Google Scholar 

  18. Baker RW, Lokhandwala KA, Jacobs ML, Gottschlich DE (2000) Recover feed stock and product recovery from reactor vent streams. Chem Eng Prog 96:51–57

    CAS  Google Scholar 

  19. Baker RW (2001) Membranes for vapor/gas separations. MTR Inc., Menlo Park, CA

    Google Scholar 

  20. Spillman RW, Barrett MG, Cooley TE (1988) Gas membrane process optimization. In: AIChE spring annual meeting, New Orleans, LA

    Google Scholar 

  21. Babcock RE, Spillman RW, Goddin CS, Cooley TE (1988) Natural gas cleanup: a comparison of membrane and amine treatment processes. Energy Progress 8:135–142

    CAS  Google Scholar 

  22. Bhide BD, Stern SA (1993) Membrane processes for the removal of acid gases from natural gas. II. Effect of operating conditions, economic parameters, and membrane properties. J Membr Sci 81:239–252

    Article  CAS  Google Scholar 

  23. Bhide BD, Stern SA (1993) Membrane processes for the removal of acid gases from natural gas. I. Process configuration and optimization of operating conditions. J Membr Sci 81:209–237

    Article  CAS  Google Scholar 

  24. Bhide BD, Stern SA (1991) A new evaluation of membrane processes for the oxygen-enrichment of air. II. Effects of economic parameters and membrane properties. J Membr Sci 62:37–58

    Article  CAS  Google Scholar 

  25. Xu J, Agrawal R (1996) Gas separation membrane cascades. I. One compressor cascades with minimal energy losses due to mixing. J Membr Sci 112:115–128

    Article  CAS  Google Scholar 

  26. Agrawal R (1997) A simplified method for synthesis of gas separation membranes cascades with limited number of compressors. Chem Eng Sci 52:1029–1044

    Article  CAS  Google Scholar 

  27. Agrawal R, Xu J (1996) Gas separation membrane cascades. II. Two compressor cascades. J Membr Sci 112:129–146

    Article  CAS  Google Scholar 

  28. Agrawal R, Xu J (1996) Gas separation membrane cascades utilizing limited numbers of compressors. AIChE J 42:2141–2154

    Article  CAS  Google Scholar 

  29. Khalilpour R, Abbas A, Lai Z, Pinnau I (2013) Analysis of hollow fibre membrane systems for multicomponent gas separation. Chem Eng Res Des 91:332–347

    Article  CAS  Google Scholar 

  30. He G, Mi Y, Yue PL, Chen G (1999) Theoretical study on concentration polarization in gas separation membrane processes. J Membr Sci 153:243–258

    Article  CAS  Google Scholar 

  31. Zhao L, Riensche E, Menzer R, Blum L, Stolten D (2008) A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture. J Membr Sci 325:284–294

    Article  CAS  Google Scholar 

  32. Zhao L, Riensche E, Menzer R, Blum L, Stolten D (2010) Multi-stage gas separation membrane processes used in post-combustion capture: energetic and economic analyses. J Membr Sci 325:160–172

    Article  Google Scholar 

  33. Zhao L, Riensche E, Menzer R, Blum L, Stolten D (2011) How gas separation membrane competes with chemical absorption in postcombustion capture. Energy Procedia 4:629–636

    Article  CAS  Google Scholar 

  34. Jusoh NW, Lau KK, Shariff AM (2012) Purification of natural gas with impurities using membrane processes: parameter estimation. AJEAS 5:78–83

    Google Scholar 

  35. Ravanchi MT, Kaghazchi T, Kargari A, Soleimani M (2009) A novel separation process for olefin gas purification: effect of operating parameters on separation performance and process optimization. J Taiwan Inst Chem E 40:511–517

    Article  CAS  Google Scholar 

  36. Merkel TC, Lin H, Wei X, Baker R (2010) Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Membr Sci 359:126–139

    Article  CAS  Google Scholar 

  37. Smith AR, Klosek J (2001) A review of air separation technologies and their integration with energy conversion processes. Fuel Process Technol 70:115–134

    Article  CAS  Google Scholar 

  38. Seppälä A (2010) Irreversibility in a gas separation membrane medium. Chem Phys 367:99–109

    Article  Google Scholar 

  39. Bhide BD, Stern SA (1991) A new evaluation of membrane processes for the oxygen enrichment of air. I. Identification of optimum operating-conditions and process configuration. J Membr Sci 62:13–35

    Article  CAS  Google Scholar 

  40. Meriläinen A, Seppälä A, Kauranen P (2012) Minimizing specific energy consumption of oxygen enrichment in polymeric hollow fiber membrane modules. Appl Energy 94:285–294

    Article  Google Scholar 

  41. Baker RW (1991) Membrane separation systems—recent developments and future directions. Noyes Data Corporation, NJ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ismail, A.F., Khulbe, K.C., Matsuura, T. (2015). Membrane Modules and Process Design. In: Gas Separation Membranes. Springer, Cham. https://doi.org/10.1007/978-3-319-01095-3_5

Download citation

Publish with us

Policies and ethics