Skip to main content

Facilitating Conceptual Change in Students’ Understanding of the Periodic Table

  • Chapter
  • First Online:
Facilitating Conceptual Change in Students’ Understanding of the Periodic Table

Part of the book series: SpringerBriefs in Education ((BRIEFSEDUCAT))

Abstract

The periodic table is considered to be an important topic of general chemistry courses in most parts of the world. Despite its usefulness as a conceptual tool for organization of the chemical elements, understanding their properties, predicting new elements and a corrective device, most students consider it to be a difficult topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkins, P., & Jones, L. (2002). Chemical principles: The quest for insight (2nd ed.). New York: Freenman.

    Google Scholar 

  • Atkins, P., & Jones, L. (2008). Chemical principles: The quest for insight (4th ed.). New York: Freeman.

    Google Scholar 

  • Bensaude-Vincent, B. (1986). Mendeleev’s periodic system of chemical elements. British Journal for the History of Science, 19, 3–17.

    Article  Google Scholar 

  • Ben-Zvi, N., & Genut, S. (1998). Uses and limitations of scientific models: The periodic table as an inductive tool. International Journal of Science Education, 20(3), 351–360.

    Article  Google Scholar 

  • Bohr, N. (1913). On the constitution of atoms and molecules, Part I. Philosophical Magazine, 26 (Series 6), 1–25.

    Google Scholar 

  • Brady, J. E., Russell, J. W., & Holum, J. R. (2000). Chemistry: Matter and its changes. New York: Wiley.

    Google Scholar 

  • Brito, A., Rodríguez, M. A., & Niaz, M. (2005). A reconstruction of development of the periodic table based on history and philosophy of science and its implications for general chemistry textbooks. Journal of Research in Science Teaching, 42, 84–111.

    Article  Google Scholar 

  • Brush, S. G. (1996). The reception of Mendeleev’s periodic law in America and Britain. Isis, 87, 595–628.

    Article  Google Scholar 

  • Brush, S. G. (2007). Predictivism and the periodic table. Studies in History and Philosophy of Science, 38, 256–259.

    Article  Google Scholar 

  • Chang, R. (2007). Chemistry (9th ed.). New York: McGraw-Hill.

    Google Scholar 

  • Christie, J. R., & Christie, M. (2003). Chemical laws and theories: A response to Vihalemm. Foundations of Chemistry, 5, 165–174.

    Article  Google Scholar 

  • De Milt, C. (1951). The congress at Karlsruhe. Journal of Chemical Education, 28, 421–425.

    Article  Google Scholar 

  • Duhem, P. (1914). The aim and structure of physical theory (second edition, trans. Philip P. Wiener, first published 1906 as La théorie physique: Son objet, sa structure by Marcel Rivière Cie, Paris. First English translation by Princeton University Press, 1954 and later by Atheneum in 1962. The book was originally published as a series of articles in French in the years 1904–1905). New York: Atheneum.

    Google Scholar 

  • Erduran, S. (2007). Breaking the law: Promoting domain-specificity in chemical education in the context of arguing about the periodic law. Foundations of Chemistry, 9, 247–263.

    Article  Google Scholar 

  • Gabel, D. L., & Bunce, D. M. (1994). Research on problem solving: Chemistry. In D. L. Gabel (Ed.), Handbook of research on science teaching and learning. New York: Macmillan.

    Google Scholar 

  • Gallego-Badillo, R., Gallego-Torres, A. P., & Pérez-Miranda, R. (2012). El Congreso de Karlsruhe: Los inicios de una comunidad científica. Educación Química, 23, 280–289.

    Google Scholar 

  • Giere, R. N. (1999). Science without laws. Chicago: University of Chicago Press.

    Google Scholar 

  • Gordin, M. D. (2004). A well-ordered thing: Dmitrii Mendeleev and the shadow of the periodic table. New York: Basic Books.

    Google Scholar 

  • Gorin, G. (1996). Mendeleev and Moseley: The principal discoverers of the periodic law. Journal of Chemical Education, 73(6), 490–493.

    Article  Google Scholar 

  • Holtzclaw, H. F., & Robinson, W. R. (1988). General chemistry (8th ed.). Lexington, MA: Heath.

    Google Scholar 

  • Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed methods research: A research paradigm whose time has come. Educational Researcher, 33, 14–26.

    Article  Google Scholar 

  • Klassen, S. (2006). A theoretical framework for contextual science teaching. Interchange, 37, 31–62.

    Article  Google Scholar 

  • Kuhn, T. S. (1977). The function of measurement in modern physical science. In Essential tension (pp. 178-224). Chicago: University of Chicago Press. (originally published in Isis, 52, 161–190, 1961).

    Google Scholar 

  • Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge (pp. 91–195). Cambridge: Cambridge University Press.

    Google Scholar 

  • Lipton, P. (2005a). Testing hypotheses: Prediction and prejudice. Science, 307(14 January), 219–221.

    Google Scholar 

  • Lipton, P. (2005b). Response. Science, 308 (3 June), 1411–1412.

    Google Scholar 

  • Mahan, B., & Myers, R. J. (1990). University chemistry (4th ed., Spanish). Menlo Park, CA: Benjamin Cummings.

    Google Scholar 

  • McMurry, J., & Fay, R. C. (2001). Chemistry (3rd ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Mendeleev, D. (1879). The periodic law of the chemical elements. The Chemical News, 40, No. 1042.

    Google Scholar 

  • Mendeleev, D. (1889). The periodic law of the chemical elements. Journal of the Chemical Society, 55, 634–656 (Faraday lecture, delivered on 4 June 1889).

    Google Scholar 

  • Mendeleev, D. (1897). The principles of chemistry (2nd English ed., trans of 6th Russian ed.). New York: American Home Library Company.

    Google Scholar 

  • Merz, J. T. (1904). A history of European thought in the nineteenth century (Vol. 1). London: William Blackwood & Sons.

    Google Scholar 

  • Moore, J. W. (2003). Editorial: Turning the (Periodic) tables. Journal of Chemical Education, 80(8), 847.

    Article  Google Scholar 

  • Moore, J. W., Stanitski, C. L., & Jurs, P. C. (2002). Chemistry: The molecular science. Orlando, FL: Harcourt College.

    Google Scholar 

  • Moseley, H. G. J. (1913a). High frequency spectra of the elements. Philosophical Magazine, 26, 1025–1034.

    Google Scholar 

  • Moseley, H. G. J. (1913–1914). Atomic models and X-ray spectra. Nature, 92, 554.

    Google Scholar 

  • Niaz, M. (2000). A rational reconstruction of the kinetic molecular theory of gases based on history and philosophy of science and its implications for chemistry textbooks. Instructional Science, 28(1), 23–50.

    Article  Google Scholar 

  • Niaz, M. (2001). Understanding nature of science as progressive transitions in heuristic principles. Science Education, 85, 684–690.

    Article  Google Scholar 

  • Niaz, M. (2009a). Critical appraisal of physical science as a human enterprise: Dynamics of scientific progress. Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Niaz, M. (2009b). Progressive transitions in chemistry teachers’ understanding of nature of science based on historical controversies. Science & Education, 18, 43–65.

    Article  Google Scholar 

  • Niaz, M. (2010). Are we teaching science as practiced by scientists? American Journal of Physics, 78(1), 5–6.

    Article  Google Scholar 

  • Niaz, M. (2012). From ‘science in the making’ to understanding the nature of science: An overview for science educators. New York: Routledge.

    Google Scholar 

  • Niaz, M., Aguilera, D., Maza, A., & Liendo, G. (2002). Arguments, contradictions, resistances, and conceptual change in students’ understanding of atomic structure. Science Education, 86, 505–525.

    Article  Google Scholar 

  • Niaz, M., & Maza, A. (2011). Nature of science in general chemistry textbooks. Dordrecht, The Netherlands: SpringerBriefs in Education.

    Book  Google Scholar 

  • Niaz, M., & Montes, L. A. (2012). Understanding stoichiometry: Towards a history and philosophy of chemistry. Educación Química, 23, 290–297.

    Google Scholar 

  • Niaz, M., Rodríguez, M. A., & Brito, A. (2004). An appraisal of Mendeleev’s contribution to the development of the periodic table. Studies in History and Philosophy of Science, 35, 271–282.

    Article  Google Scholar 

  • Novak, J. D. (1990). Concept mapping: A useful tool for science education. Journal of Research in Science Teaching, 27(10), 937–949.

    Article  Google Scholar 

  • Pattison Muir, M. M. (1887). On the teaching of chemistry. Nature, 36, 536–538.

    Article  Google Scholar 

  • Pattison Muir, M.M. (1907/1975). A history of chemical theories and laws. New York: Arno Press (First published by Wiley in 1907).

    Google Scholar 

  • Rammelsberg, C. F. (1874). Grundriss de chemie gemäss den neueren ansichten (4th ed.). Berlin: Habel.

    Google Scholar 

  • Ramsay, W. (1897). An undiscovered gas (address to the Section of Chemical Sciences of the British Association). Nature, 56, 378–382.

    Google Scholar 

  • Reger, D. L., Goode, S. R., & Mercer, E. (1997). Chemistry: Principles and practice. Philadelphia: Saunders.

    Google Scholar 

  • Robinson, J. (2000). The paradigm changes—but do our students know that? Journal of College Science Teaching, 29, 177–182.

    Google Scholar 

  • Russo, S., & Silver, M. (2002). Introductory chemistry (2nd ed.). San Francisco: Benjamin Cummings.

    Google Scholar 

  • Rutherford, E. (1911). The scattering of alpha and beta particles by matter and the structure of the atom. Philosophical Magazine, 21, 669–688.

    Article  Google Scholar 

  • Shapere, D. (1977). Scientific theories and their domains. In F. Suppe (Ed.), The structure of scientific theories (2nd ed., pp. 518–565). Chicago: University of Illinois Press.

    Google Scholar 

  • Sisler, H. H., Dresdner, R. D., & Mooney, W. T. (1980). Chemistry: A systematic approach. New York: Oxford University Press.

    Google Scholar 

  • Thomson, J. J. (1897). Cathode rays. Philosophical Magazine, 44, 293–316.

    Article  Google Scholar 

  • Van Spronsen, J. (1969). The periodic system of chemical elements. A history of the first hundred years. Amsterdam: Elsevier.

    Google Scholar 

  • Wartofsky, M. W. (1968). Conceptual foundations of scientific thought: An introduction to the philosophy of science. New York: Macmillan.

    Google Scholar 

  • Weisberg, M. (2007). Who is a modeler? British Journal for the Philosophy of Science, 58, 207–233.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Niaz .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Niaz, M., Luiggi, M. (2014). Facilitating Conceptual Change in Students’ Understanding of the Periodic Table. In: Facilitating Conceptual Change in Students’ Understanding of the Periodic Table. SpringerBriefs in Education. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01086-1_1

Download citation

Publish with us

Policies and ethics