Bioremediation of Nitroaromatics (NACs)-Based Explosives: Integrating ‘-Omics’ and Unmined Microbiome Richness

  • Debasree Kundu
  • Chinmay Hazra
  • Ambalal ChaudhariEmail author
Part of the Environmental Science and Engineering book series (ESE)


This review aims to be a pragmatic primer in the field of post-genomic bioremediation of NACs-based explosives with special emphasis on the ‘omics’ technologies. After an introduction in the concepts and methodologies of high-throughput molecular approaches and a discussion of the numerous emerging variations on the basic theme, a short overview of the success stories of ‘omics’ in bioremediation of NACs are revisited, followed by a brief discussion about the technical, methodological, and computational resources that embody the landscape of microbial epimetabolome. The review ends with a note on the research-commercialization gap, taking into account the containment technologies pertaining to biosafety issues and technical safeguards.


Microbial Community Synthetic Biology Microbial Fuel Cell Terminal Restriction Fragment Length Polymorphism Metagenomic Library 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Debasree Kundu and Chinmay Hazra are grateful to University Grants Commission (U.G.C.), New Delhi, and Department of Science and Technology (D.S.T.), New Delhi for providing RFSMS and INSPIRE fellowship, respectively.


  1. Altamirano M, Villada LG, Agrelo M, Martın LS, Otero LM, Moya AF, Rico M, Rodas VL, Costas E (2004) A novel approach to improve specificity of algal biosensors using wild-type and resistant mutants: an application to detect TNT. Biosens Bioelectron 19:1319CrossRefGoogle Scholar
  2. Ashby MN, Rine J, Mongodin EF, Nelson KE, Dimster-Denk D (2007) Serial analysis of rRNA genes and the unexpected dominance of rare members of microbial communities. Appl Environ Microbiol 73(14):4532–4542CrossRefGoogle Scholar
  3. Bakaltcheva IB, Ligler FS, Patterson CH, Shriver-Lake LC (1999) Multi-analyte explosive detection using a fiber optic biosensor. Anal Chim Acta 399:13–20CrossRefGoogle Scholar
  4. Bernstein A, Ronen Z (2011) Biodegradation of explosives TNT, RDX and HMX. In: Singh SN (ed) Microbial degradation of xenobiotics. Springer, Berlin, pp 135–176Google Scholar
  5. Bhalla V, Zhao X, Zazubovich V (2011) Detection of explosive compounds using photosystem II-based biosensor. J Electroanal Chem 657(1–2):84–90Google Scholar
  6. Bombach P, Richnow HH, Kästner M, Fischer A (2010) Current approaches for the assessment of in situ biodegradation. Appl Microbiol Biotechnol 86:839–852CrossRefGoogle Scholar
  7. Breitling R, Pitt AR, Barrett MP (2006) Precision mapping of the metabolome. Trends Biotechnol 24:543–548CrossRefGoogle Scholar
  8. Cao B, Nagarajan K, Loh K-C (2009) Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 85:207–228CrossRefGoogle Scholar
  9. Chakraborty R, Wu CH, Hazen TC (2012) Systems biology approach to bioremediation. Curr Opin Biotechnol 23:1–8CrossRefGoogle Scholar
  10. Chauhan A, Jain RK (2010) Biodegradation: gaining insight through proteomics. Biodegradation. doi: 10.1007/s10532-010-9361-0 Google Scholar
  11. Checa SK, Zurbriggen MD, Soncini FC (2012) Bacterial signaling systems as platforms for rational design of new generations of biosensors. Curr Opin Biotechnol 23:1–7CrossRefGoogle Scholar
  12. Chu F, Yang J (2012) Coil-shaped plastic optical fiber sensor heads for fluorescence quenching based TNT sensing. Sens Actuators A 175:43–46CrossRefGoogle Scholar
  13. Committee on the Biological Confinement of Genetically Engineered Organisms (2004) Biological confinement of genetically engineered organisms. The National Academies Press, Washington DCGoogle Scholar
  14. de las Heras A, Carreño CA, de Lorenzo V (2008) Stable implantation of orthogonal sensor circuits in Gram-negative bacteria for environmental release. Environ Microbiol 10:3305–3316Google Scholar
  15. de Lorenzo V (2008) Systems biology approaches to bioremediation. Curr Opin Biotechnol 19:579–589CrossRefGoogle Scholar
  16. Desai C, Pathak H, Madamwar D (2010) Advances in molecular and ‘‘-omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Biores Technol 101:1558–1569CrossRefGoogle Scholar
  17. EEA (2007) Progress in management of contaminated sites. European Environment Agency, CopenhagenGoogle Scholar
  18. Eyers L, George I, Schuler L, Stenuit B, Agathos SN, Fantroussi SE (2004) Environmental genomics: exploring the unmined richness of microbes to degrade xenobiotics. Appl Microbiol Biotechnol 66:123–130CrossRefGoogle Scholar
  19. Fahrenfeld N, Zoeckler J, Widdowson MA, Pruden A (2012) Effect of biostimulants on 2,4,6-trinitrotoluene (TNT) degradation and bacterial community composition in contaminated aquifer sediment enrichments. Biodegradation. doi: 10.1007/s10532-012-9569-2 Google Scholar
  20. Friemann R, Ivkovic-Jensen MM, Lessner DJ, Yu CL, Gibson DT, Parales RE, Eklund H, Ramaswamy S (2005) Structural insight into the dioxygenation of nitroarene compounds: the crystal structure of nitrobenzene dioxygenase. J Mol Biol 348(5):1139–1151CrossRefGoogle Scholar
  21. Fulekar MH, Sharma J (2008) Bioinformatics applied in bioremediation. Innov Romanian Food Biotechnol 2(25):28–36Google Scholar
  22. Galvão TC, de Lorenzo V (2006) Transcriptional regulators à la carte: engineering new effector specificities in bacterial regulatory proteins. Curr Opin Biotechnol 17:34–42CrossRefGoogle Scholar
  23. Galvao TC, Mohn WW, Lorenzo V (2005) Exploring the microbial biodegradation and biotransformation gene pool. Trends Biotechnol 23:497–506CrossRefGoogle Scholar
  24. Galvão TC, Mencía M, de Lorenzo V (2007) Emergence of novel functions in transcriptional regulators by progression to stem protein types. Mol Microbiol 65:907–919CrossRefGoogle Scholar
  25. Gao J, Ellis LBM, Wackett LP (2011) The University of Minnesota pathway prediction system: multi-level prediction and visualization. Nucleic Acids Res 39:W406–W411CrossRefGoogle Scholar
  26. Garmendia J, de las Heras A, Galvão TC, de Lorenzo V (2008) Tracing explosives in soil with transcriptional regulators of Pseudomonas putida evolved for responding to nitrotoluenes. Microb Biotechnol 1:236–246Google Scholar
  27. Goldman ER, Anderson GP, Lebedev N, Lingerfelt BM, Winter PT, Patterson CH Jr, Mauro JM (2003) Analysis of aqueous 2,4,6-trinitrotoluene (TNT) using a fluorescent displacement immunoassay. Anal Bioanal Chem 375:471Google Scholar
  28. Gu X, Trybilo M, Ramsay S, Jensen M, Fulton R, Rosser S, Gilbert D (2010) Engineering a novel self-powering electrochemical biosensor. Syst Syn Biol 4:203–214CrossRefGoogle Scholar
  29. He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC et al (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1:67–77CrossRefGoogle Scholar
  30. Hofstetter TB, Spain JC, Nishino SF, Bolotin J, Schwarzenbach RP (2008) Identifying competing aerobic nitrobenzene biodegradation pathways by compound-specific isotope analysis. Environ Sci Technol 42:4764–4770CrossRefGoogle Scholar
  31. Jones RM, Britt-Compton B, Williams PA (2003) The naphthalene catabolic (nag) genes of Ralstonia sp. strain U2 are operon that is regulated by NagR, a LysR type transcriptional activator. J Bacterial 185:5847–5853CrossRefGoogle Scholar
  32. Ju K-S, Parales RE (2011) Evolution of a new bacterial pathway for 4-nitrotoluene degradation. Mol Microbiol 82(2):355–364CrossRefGoogle Scholar
  33. Ju K-S, Parales JV, Parales RE (2009) Reconstructing the evolutionary history of nitrotoluene detection in the transcriptional regulator NtdR. Mol Microbiol 74:826–843CrossRefGoogle Scholar
  34. Kapley A, Purohit HJ (2009) Genomic tools in bioremediation. Ind J Microbiol 49:108–113CrossRefGoogle Scholar
  35. Keith JA, David RW (2000) High-speed fluorescence detection of explosives-like vapors. Anal Chem 72:1947–1955CrossRefGoogle Scholar
  36. Kim HJ, Ishidou E, Kitagawa E, Momose Y, Iwahashi H (2004) A yeast DNA microarray for the evaluation of toxicity in environmental water containing burned ash. Environ Monit Assess 92:253–272CrossRefGoogle Scholar
  37. Kitagawa E, Takahashi J, Momose Y, Iwahashi H (2002) Effects of the pesticide thiuram: genome-wide screening of indicator genes by yeast DNA microarray. Environ Sci Technol 36:3908–3915CrossRefGoogle Scholar
  38. Kivisaar M (2009) Degradation of nitroaromatic compounds: a model to study evolution of metabolic pathways. Mol Microbiol 74(4):777–781CrossRefGoogle Scholar
  39. Kulkarni MA, Chaudhari AB (2006) Biodegradation of p-nitrophenol by P. putida. Biores Technol 97:982–988CrossRefGoogle Scholar
  40. Kulkarni M, Chaudhari A (2007) Microbial remediation of nitro-aromatic compounds: an overview. J Environ Manage 85:496–512CrossRefGoogle Scholar
  41. Kundu D, Hazra C, Chaudhari A (2011) Microbial degradation of nitro-toluenes and their derivatives: progresses, challenges and opportunities. In: Mason AC (ed) Bioremediation: Biotechnology, Engineering and Environment Management. Nova Publishers, USA, pp 1–64Google Scholar
  42. Lal N, Srivastava N (2010) Phytoremediation of toxic explosives. In: Ashraf M et al. (eds) Plant adaptation and phytoremediation Springer, New York, pp 383–397Google Scholar
  43. Lee J, Cao L, Ow SY, Barrios-Llerena ME, Chen W, Wood TK, Wright PC (2006) Proteome changes after metabolic engineering to enhance aerobic mineralization of cis-1,2-dichloroethylene. J Proteome Res 5:1388–1397CrossRefGoogle Scholar
  44. Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. J Anal Chimica Acta 568:200–210CrossRefGoogle Scholar
  45. Lessner DJ, Parales RE, Narayan S, Gibson DT (2003) Expression of the nitroarene dioxygenase genes in Comamonas sp. strain JS765 and Acidovorax sp. strain JS42 is induced by multiple aromatic compounds. J Bacteriol 185:3895–3904CrossRefGoogle Scholar
  46. Leungsakul T, Keenan BG, Yin H, Smets BF, Wood TK (2005) Saturation mutagenesis of 2,4-DNT dioxygenase of Burkholderia sp. strain DNT for enhanced dinitrotoluene degradation. Biotechnol Bioeng 92:416–426CrossRefGoogle Scholar
  47. Leungsakul T, Johnson GR, Wood TK (2006) Protein engineering of the 4-methyl-5-nitrocatechol monooxygenase from Burkholderia sp. strain DNT for enhanced degradation of nitroaromatics. Appl Environ Microbiol 72:3933–3939CrossRefGoogle Scholar
  48. Long Y, Chen H, Wang H, Peng Z, Yang Y, Zhang G, Li N, Liu F, Pei J (2012) Highly sensitive detection of nitroaromatic explosives using an electrospun nanofibrous sensor based on a novel fluorescent conjugated polymer. Anal Chim Acta 744:82–91CrossRefGoogle Scholar
  49. Loy A, Schulz C, Lucker S, Schopfer-Wendels A, Stoecke K, Baranyi C, Lehner A, Wagner M (2005) 16S rRNA gene-based oligonucleotide microarray for environmental monitoring of the betaproteobacterial order Rhodocyclales. Appl Environ Microbiol 71:1373–1386CrossRefGoogle Scholar
  50. Maphosa F, de Vos WM, Smidt H (2010) Exploiting the ecogenomics toolbox for environmental diagnostics of organohalide-respiring bacteria. Trends Biotechnol 28:308–316CrossRefGoogle Scholar
  51. Mongra AC, Kaur A (2012) Biosensor activities around the globe. Digest J Nanomaterials Biostructures 7(4):1457–1471Google Scholar
  52. Monti MR, Smania AM, Fabro G, Alvarez ME, Argarana CE (2005) Engineering Pseudomonas fluorescens for biodegradation of 2,4-dinitrotoluene. Appl Environ Microbiol 71:8864–8872CrossRefGoogle Scholar
  53. Moriya Y, Shigemizu D, Hattori M, Tokimatsu T, Kotera M, Goto S, Kanehisa M (2010) PathPred: an enzyme-catalyzed metabolic pathway prediction server. Nucleic Acids Res 38:W138–W143CrossRefGoogle Scholar
  54. Naal Z, Park JH, Bernhard S, Shapleigh JP, Batt CA, Abrun HD (2002) Amperometric TNT biosensor based on the oriented immobilization of a nitroreductase maltose binding protein fusion. Anal Chem 74:140CrossRefGoogle Scholar
  55. Nesatyy V, Suter MJ-F (2007) Proteomics for the analysis of environmental stress responses in organisms. Environ Sci Technol 41(20):6891–6900CrossRefGoogle Scholar
  56. Ng LC, Forsman M (2000) Whole cell biosensor for the detection of explosives. The FAO Defense Research Establishment Research ReportGoogle Scholar
  57. Nocker A, Burn M, Camper AK (2007) Genotypic microbial community profiling: a critical technical review. Microb Ecol 54:276–289CrossRefGoogle Scholar
  58. Pazos F, Guijas D, Valencia A, De Lorenzo V (2005) MetaRouter: bioinformatics for bioremediation. Nucleic Acids Res 33:D588–D592CrossRefGoogle Scholar
  59. Perreault NN, Manno D, Halasz A, Thiboutot S, Ampleman G, Hawari J (2012) Aerobic biotransformation of 2,4-dinitroanisole in soil and soil Bacillus sp. Biodegradation 23:287–295CrossRefGoogle Scholar
  60. Prasad MNV, Freitas H, Fraenzle S, Wuenschmann S, Markert B (2010) Knowledge explosion in phytotechnologies for environmental solutions. Environ Pollut 158:18–23CrossRefGoogle Scholar
  61. Purohit HJ (2003) Biosensors as molecular tools for use in bioremediation. J Cleaner Prod 11:293–301CrossRefGoogle Scholar
  62. Rabbanya SY, Lanea WJ, Marganskia WA, Kusterbeck AW, Ligler FS (2000) Trace detection of explosives using a membrane-based displacement immunoassay. J Immunol Methods 246:69–77CrossRefGoogle Scholar
  63. Radhika V, Proikas-Cezanne T, Jayaraman M, Onesime D, Ha JH, Dhanasekaran DN (2007) Chemical sensing of DNT by engineered olfactory yeast strain. Nature Chem Biol 3:325–330CrossRefGoogle Scholar
  64. Rayu S, Karpouzas DG, Singh BK (2012) Emerging technologies in bioremediation: constraints and opportunities. Biodegradation 23:917–926CrossRefGoogle Scholar
  65. Reichert K, Menzel R (2005) Expression profiling of five different xenobiotics using a Caenorhabditis elegans whole genome microarray. Chemosphere 61:229–237CrossRefGoogle Scholar
  66. Rittmann BE, Hausner M, Löffler F, Love NG, Muyzer G, Okabe S et al (2006) A vista for microbial ecology and environmental biotechnology. Environ Sci Technol 40:1096–1103CrossRefGoogle Scholar
  67. Ron EZ (2007) Biosensing environmental pollution. Curr Opin Biotechnol 18:252–256CrossRefGoogle Scholar
  68. Rylott EL, Bruce NC (2008) Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 27:73–81CrossRefGoogle Scholar
  69. Rylott EL, Jackson RG, Sabbadin F, Seth-Smith HMB, Edwards J, Chong CS, Strand SE, Grogan G, Bruce NC (2011a) The explosive-degrading cytochrome P450 XplA: biochemistry, structural features and prospects for bioremediation. Biochim Biophys Acta 1814:230–236CrossRefGoogle Scholar
  70. Rylott EL, Lorenz A, Bruce NC (2011b) Biodegradation and biotransformation of explosives. Curr Opin Biotechnol 22:434–440CrossRefGoogle Scholar
  71. Sagi-Ben Moshe S, Ronen Z, Dahan O, Weisbrod N, Groisman L, Adar E, Nativ R (2009) Sequential biodegradation of TNT, RDX and HMX in a mixture. Environ Pollut 157:2231–2238CrossRefGoogle Scholar
  72. Singh S (2007) Sensors-an effective approach for the detection of explosives. J Hazard Mater 144:15–28CrossRefGoogle Scholar
  73. Singh R, Singh A (2011) Biodegradation of military explosives RDX and HMX. In: Singh SN (ed) Microbial degradation of xenobiotics. Springer, New York,pp 235–261Google Scholar
  74. Singh S, Kang S, Mulchandani A, Chen W (2008) Bioremediation: environmental clean-up through pathway engineering. Curr Opin Biotechnol 19:437–444CrossRefGoogle Scholar
  75. Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9CrossRefGoogle Scholar
  76. Singh B, Kaur J, Singh K (2012) Microbial remediation of explosive waste. Crit Rev Microbiol 38:152–167CrossRefGoogle Scholar
  77. Smets BF, Yin H, Esteve-Nuñez A (2007) TNT biotransformation: when chemistry confronts mineralization. Appl Microbiol Biotechnol 76:267–277CrossRefGoogle Scholar
  78. Smirnova IA, Dian C, Leonard GA, McSweeney S, Birse D, Brzezinski P (2004) Development of a bacterial biosensor for nitrotoluenes: the crystal structure of the transcriptional regulator DntR. J Mol Biol 340:405–418CrossRefGoogle Scholar
  79. Somerville CC, Nishino SF, Spain JC (1995) Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45. J Bacteriol 177:3837–3842Google Scholar
  80. Stenuit B, Eyers L, Schuler L, Agathos SN, George I (2008) Emerging high-throughput approaches to analyze bioremediation of sites contaminated with hazardous and/or recalcitrant wastes. Biotechnol Adv 26:561–575CrossRefGoogle Scholar
  81. Sumner JJ, Chu K (2011) Electrochemical characterization of riboflavin-enhanced reduction of trinitrotoluene. Sensors 11:10840–10850CrossRefGoogle Scholar
  82. Uchiyama T, Abe T, Ikemura T, Watanabe K (2005) Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol 23:88–93CrossRefGoogle Scholar
  83. USEPA (2004) Cleaning up the nation’s waste sites: markets and technology trends. Office of Solid Waste and Emergency Response, Washington DCGoogle Scholar
  84. USEPA (2011) National priorities list. Accessed 11 Oct 2011
  85. van der Lelie D, Lesaulnier C, McCorkle S, Geets J, Taghavi S, Dunn J (2006) Use of single-point genome signature tags as a universal tagging method for microbial genome surveys. Appl Environ Microbiol 72:2092–2101CrossRefGoogle Scholar
  86. Villas-Bôas SG, Bruheim P (2007) The potential of metabolomics tools in bioremediation studies. OMICS 11:305–313CrossRefGoogle Scholar
  87. Wagner AO, Malin C, Illmer P (2009) Application of denaturing high performance liquid chromatography in microbial ecology: fermentor sludge, compost, and soil community profiling. Appl Environ Microbiol 75:956–964CrossRefGoogle Scholar
  88. Wilson R, Clavering C, Hutchinson A (2003) Paramagnetic bead based enzyme electrochemiluminescence immunoassay for TNT. J Electroanal Chem 557:1CrossRefGoogle Scholar
  89. Wood T (2008) Molecular approaches in bioremediation. Curr Opin Biotechnol 19:572–578CrossRefGoogle Scholar
  90. Yang J-S, Swager TM (1998) Fluorescent porous polymer films as TNT chemosensors: electronic and structural effects. J Am Chem Soc 120:11864–11873CrossRefGoogle Scholar
  91. Yu C-P, Chu K-H (2005) A quantitative assay for linking microbial community function and structure of a naphthalene-degrading microbial consortium. Environ Sci Technol 39:9611–9619CrossRefGoogle Scholar
  92. Yu CP, Ahuja R, Sayler GS, Chu K-H (2005) Quantitative molecular assay for fingerprinting microbial communities of wastewater and estrogen-degrading consortia. Appl Environ Microbiol 71:1433–1444CrossRefGoogle Scholar
  93. Yu Z, Yu M, Morrison M (2006) Improved serial analysis of V1 ribosomal sequence tags (SARST-V1) provides a rapid, comprehensive, sequence-based characterization of bacterial diversity and community composition. Environ Microbiol 8:603–611CrossRefGoogle Scholar
  94. Zhang X, Qiu X, Lu R et al (2010) Phenothiazine-based oligomers as novel fluorescence probes for detecting vapor-phase nitro compounds. Talanta 82:1943–1949CrossRefGoogle Scholar
  95. Zhang W, Qiu L-G, Yuan Y-P, Xie A-J, Shen Y-H, Zhu J-F (2012) Microwave-assisted synthesis of highly fluorescent nanoparticles of a melamine-based porous covalent organic framework for trace-level detection of nitroaromatic explosives. J Hazard Mater 221–222:147–154CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Debasree Kundu
    • 1
  • Chinmay Hazra
    • 1
  • Ambalal Chaudhari
    • 1
    Email author
  1. 1.School of Life SciencesNorth Maharashtra UniversityJalgaonIndia

Personalised recommendations