Advertisement

Bacterial and Fungal Degradation of Nitroglycrine

  • Divya Bhatia
  • Anita Grewal
  • Meenu Rathi
  • Deepak Kumar MalikEmail author
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Nitroglycerin (NG) is also known as trinitroglycerine, glyceryl trinitrate or more formally: 1,2,3-trinitroxypropane. It is a heavy, colourless, oily, explosive liquid. Glycerol trinitrate (GTN) is a nitrate ester formed by the action of nitronium ions on the hydroxyl groups of glycerol.

Keywords

Cetyl Trimethyl Ammonium Bromide Tetra Ethyl Ortho Silicate Klebsiella Oxytoca Mixed Microbial Culture Mixed Bacterial Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Accashian JV, Vinopal RT, Kim BJ, Smets BF (1998) Aerobic growth on nitroglycerin as the sole carbon, nitrogen, and energy source by a mixed bacteria culture. Appl Environ Microbiol 64:3300–3304Google Scholar
  2. Accashian JV, Smets BF, Kim BJ (2000) Aerobic biodegradation of nitroglycerin in a sequencing batch reactor. Water Environ Res 72(4):499–506CrossRefGoogle Scholar
  3. ADPA (1975) American defense preparedness association. Waste water treatment in the military explosives and propellant production industry, vol 3. Technical report 802872. Office of Research and Development, US Environmental Protection Agency, Washington, DCGoogle Scholar
  4. Bhaumik S, Christodoulatos C, Korfiatis GP, Brodman BW (1997) Aerobic and anaerobic biodegradation of nitroglycerin in batch and packed bed bioreactors. Water Sci Technol 36:139–146Google Scholar
  5. Binks PR, French CE, Nicklin S, Bruce NC (1996) Degradation of pentaerythritol tetra nitrate by Enterobacter cloacae PB2. Appl Environ Microbiol 62:1214–1219Google Scholar
  6. Belhert DS, Knoke KL, Fox BG, Chambliss GH (1997) Regioselectivity of nitroglycerin denitration by flavoprotein nitroester reductases purified from two Pseudomonas species. J Bacteriol 179:6912–6920Google Scholar
  7. Burrows WD, Rosenblatt DH, Mitchell WR, Parmer DL (1989) Organic explosives and related compounds: environmental and health considerations, AD-A210 554, US Army Biomedical Research and Development Laboratory, Fort Detrick, MDGoogle Scholar
  8. Christodoulatos C, Bhaumik S, Brodman BW (1997) Anaerobic biodegradation of nitroglycerin. Water Res 31:1462–1470CrossRefGoogle Scholar
  9. Cyplik P, Marecik R, Piotrowska-Cyplik A, Olejnik A, Drozdzynska A, Chrzanowski L (2012) Biological denitrification of high nitrate processing waste waters from explosives production plant. Water Air Soil Pollut 223(4):1791–1800CrossRefGoogle Scholar
  10. Dario A, Schroeder M, Nyanhongo GS, Englmayer G, Guebitz GM (2010) Development of a biodegradable ethylene glycol dinitrate-based explosive. J Hazard Mater 176:125–130CrossRefGoogle Scholar
  11. Ducrocq C, Claudine S, Lenfant M (1989) Bioconversion of glycerol trinitrate into mononitrates by Geotrichum candidum. FEMS Microbiol Lett 65:219–222CrossRefGoogle Scholar
  12. Ducrocq C, Servy C, Lenfant M (1990) Formation of glyceryl 2-mononitrate by regioselective bioconversion of glyceryl trinitrate efficiency of the filamentous fungus Phanerochaete chrysosporium. Biotechnol Appl Biochem 12:325–330Google Scholar
  13. Eapen S, Singh S, D’Souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:442–451CrossRefGoogle Scholar
  14. Ellis IHV, Hodgson JR, Hwang SW, Halpap LM, Helton DO (1978) Disposition and metabolism and Ames test of additional compounds. Progress report 6, no NTIS: PC AO3/MF-AO1. Midwest Research Institute, Kansas CityGoogle Scholar
  15. Fitzpatrick TB, Amrhein N, Macheroux P (2003) Characterization of YqjM, an old yellow enzyme homolog from Bacillus subtilis involved in the oxidative stress response. J Biol Chem 278:19891–19897CrossRefGoogle Scholar
  16. French CE, Nicklin S, Bruce NC (1996) Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2. J Bacteriol 178:6623–6627Google Scholar
  17. Gilman AG, Rall TW, Nies AS, Taylor P (eds) (1990) The pharmacological basis of therapeutics, 8th edn. Pergamon Press, New York, pp 764–774Google Scholar
  18. Goel A, Kumar G, Payne GF, Dube SK (1997) Plant cell biodegradation of a xenobiotic nitrate ester, nitroglycerin. Nat Biotechnol 15(2):174–177CrossRefGoogle Scholar
  19. Gorontzy T, Drzyzga O, Kahl MW, Bruns-Nagel D, Breitung J, von Loew E, Blotevogel KH (1994) Microbial degradation of explosives and related compounds. Crit Rev Microbiol 20:265–284CrossRefGoogle Scholar
  20. Hawari J, Baudet S, Halasz A, Thiboutot S, Ampleman G (2000) Microbialdegradation of explosives: biotransformation versus mineralization. Appl Microbiol Biotechnol 54:605–618CrossRefGoogle Scholar
  21. Husserl J, Spain JC, Hughes JB (2010) Growth of Arthrobacter sp. strain JBH1 on nitroglycerin as the sole source of carbon and nitrogen. Appl Environ Microbiol 76(5):1689–1691CrossRefGoogle Scholar
  22. Kaplan DL (1990) Biotransformation pathways of hazardous energetic organics in composts. In: Kamely D, Chakabaity A, Omlan GS (eds) Advances in applied biotechnology 4: biotechnology and biodegradation. Portfolio Publishing Houston, USA, pp 154–181Google Scholar
  23. Klaassen CD (ed) (1996) Casarett and Doull’s toxicology: the basic science of poisons, 5th edn. McGraw-Hill, New York, p 524Google Scholar
  24. Logan RP (1953) Acid and explosive wastes. In: Rudolfs W (ed) Industrial wastes, their disposal and treatment. Reinhold Publishing Corp, New York, pp 232–254Google Scholar
  25. Marshall SJ, White GF (2001) Complete denitration of nitroglycerin by bacteria isolated from a wash water soakaway. Appl Environ Microbiol 67:2622–2626CrossRefGoogle Scholar
  26. Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162CrossRefGoogle Scholar
  27. Meng M, Sun WQ, Geelhaar LA, Kumar G, Patel AR, Payne GF, Speedie MK, Stacy JR (1995) Denitration of glycerol trinitrate by resting cells and cell extracts of Bacillus thuringiensis/cereus and Enterobacter agglomerans. Appl Environ Microbiol 61:2548–2553Google Scholar
  28. Oh S, Chan DK, Kim BJ, Chiu PC (2004) Reduction of nitroglycerin with elemental iron: pathway, kinetics, and mechanisms. Environ Sci Technol 38:3723–3730CrossRefGoogle Scholar
  29. Parrish FW (1977) Fungal transformation of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Appl Environ Microbial 34:232–233Google Scholar
  30. Pesari H, Grasso D (1993) Biodegradation of an inhibitory non growth substrate (nitroglycerin) in batch reactors. Biotechnol Bioeng 41:79–87CrossRefGoogle Scholar
  31. Podlipna R, Fialova Z, Vanek T (2010) Degradation of nitroesters by plant tissue cultures. J Hazard Mater 184(1–3):591–596CrossRefGoogle Scholar
  32. Rylott EL, Bruce NC (2008) Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 27:73–81CrossRefGoogle Scholar
  33. Saad R, Thiboutot S, Ampleman G, Dashan W, Hawari J (2010a) Degradation of trinitroglycerin (TNG) using zero-valent iron nanoparticles/nanosilica SBA-15 composite (ZVINs/SBA-15). Chemosphere 81(7):853–858CrossRefGoogle Scholar
  34. Saad R, Thiboutot S, Ampleman G, Dashan W, Hawari J (2010b) Sorptive removal of trinitroglycerin (TNG) from water using nanostructured silica-based materials. J Environ Qual 39(2):580–586CrossRefGoogle Scholar
  35. Samantha JM, Graham FW (2001) Complete denitration of nitroglycerin by bacteria isolated from a wash water soak away. Appl Environ Microbiol 67(6):2622–2626CrossRefGoogle Scholar
  36. Samantha SK, Chatterjee S, Maikap S, Maiti CK (2004) Ultrathin oxynitride films on strained SiGe layers by a three-step NO/O2/NO process. Solid-State Electronics 48:SS91-97Google Scholar
  37. Servent D, Ducrocq C, Henry Y, Guissani A, Lenfant M (1991) Nitroglycerin metabolism by Phanerochaete chrysosporium: evidence for nitric oxide and nitrite formation. Biochim Biophysica Acta 1074:320–325CrossRefGoogle Scholar
  38. Sharma A, Sundaram ST, Zhang YZ, Brodman BW (1995) Nitrocellulose degradation by co-cultures of Sclerotium rolfsii and Fusarium solani. J Ind Microbiol 15:1–4CrossRefGoogle Scholar
  39. Smets BF, Vinopal RT, Grasso D, Strevett KA, Kim BJ (1995) Nitroglycerin biodegradation: theoretical thermodynamic considerations. J Ener Mater 13:385–389CrossRefGoogle Scholar
  40. Smith JG (1986) Water quality criteria for nitroglycerin: final report. Oak Ridge National Laboratory, Oak RidgeGoogle Scholar
  41. Smith LL, Carrazza J, Wong K (1983) Treatment of wastewaters containing propellants and explosives. J Hazard Mater 7:303CrossRefGoogle Scholar
  42. Spain JC, Hughes JB, Knackmuss HJ (2000) Biodegradation of nitroaromatic compounds and explosives. CRC Press LLC, Boca RatonGoogle Scholar
  43. Sundaram ST, Zhang YZ, Sharma A, Brodman BW (1997) Screening for the involvement of the hydroxyl radical in the biodegradation of glyceryl trinitrate by Penicillium corylophilium Dierckz. Waste Manag 17:437–441CrossRefGoogle Scholar
  44. Urbanski T (1965) Chemistry and technology of explosives. PWN-Polish Scientific Publishers, WarsawGoogle Scholar
  45. US Army (1973) Natick research and development command, Natick. Twenty-second conferences on microbiological deterioration of military material. Technical Report 75-2-FSL. Food Sciences Laboratory. US Army Natick Research and Development Command, Natick, MassGoogle Scholar
  46. US Army (1974) Natick research and development command, Natick. Twenty-third conferences on microbiological deterioration of military material. Technical Report 75-87-FSL. Food Sciences Laboratory, US Army Natick Research and Development Command, Natick, MassGoogle Scholar
  47. USEPA (1992) US environmental protection agency. Drinking water heath advisory: munitions–trinitroglycerol (TNG). In: Roberts WC, Hartley WR (eds) USEPA office of drinking water health advisories. Lewis Publishers, Boca RatonGoogle Scholar
  48. Walker JE, Kaplan DL (1992) Biological degradation of explosives and chemical agents. US Army Natick Research, Development and Engineering Center, Natick, MassachusettsGoogle Scholar
  49. Weber RWS, Ridderbusch DC, Anke H (2002) 2,4,6- trinitrotoluene (TNT) tolerance and and biotransformation potential of microfungi isolated from TNT contaminated soils. Mycol Res 106:336–344CrossRefGoogle Scholar
  50. Wendt TM, Cornell JH, Kaplan AM (1978) Microbial degradation of glycerol nitrates. Appl Environ Microbiol 36:693–699Google Scholar
  51. White GF, Snape JR (1996) Bacterial biodegradation of nitrate esters. In Kaffka AV (ed.) Sea-dumped chemical weapons: aspects, problems and solutions, Kluwer Academic Press, Dordrecht, pp 145–156Google Scholar
  52. White GF, Snape JR, Niklin S (1993) Presented in the 9th international biodeterioration and biodegradation symposium. The University of Leeds, UKGoogle Scholar
  53. White GF, Snape JR, Nicklin S (1996a) Bacterial biodegradation of glycerol trinitrate. Int Biodeterior Biodegrad 38:77–82CrossRefGoogle Scholar
  54. White GF, Snape JR, Nicklin S (1996b) Biodegradation of glycerol trinitrate and pentaerythritol tetranitrate by Agrobacterium radiobacter. Appl Environ Microbiol 62:637–642Google Scholar
  55. Williams RE, Bruce NC (2000) The role of nitrate ester reductase enzymes in the biodegradation of explosives. In: Spain JC, Hughes JB, Knackmuss H-J (eds) Biodegradation of nitroaromatic compounds and explosives. CRC Press LLC, Boca Raton, pp 161–184Google Scholar
  56. Ye J, Singh A, Ward OP (2004) Biodegradation of nitroaromatics and other nitrogen-containing xenobiotics. World J Microbiol Biotechnol 20:117–135CrossRefGoogle Scholar
  57. Zhang YZ, Sundaram ST, Sharma A, Brodman BW (1997) Biodegradation of glyceryl trinitrate by Penicillium corylophilum Dierckx. Appl Environ Microbiol 63:1712–1714Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Divya Bhatia
    • 1
  • Anita Grewal
    • 1
  • Meenu Rathi
    • 2
  • Deepak Kumar Malik
    • 1
    Email author
  1. 1.Department of BiotechnologyUniversity Institute of Engineering and Technology, Kurukshetra UniversityKurukshetraIndia
  2. 2.Department of BotanyUniversity College, Kurukshetra UniversityKurukshetraIndia

Personalised recommendations